基于YOLOv5s的无人机密集小目标检测算法
|
韩俊,袁小平,王准,陈烨
|
UAV dense small target detection algorithm based on YOLOv5s
|
Jun HAN,Xiao-ping YUAN,Zhun WANG,Ye CHEN
|
|
表 1 消融实验中各模型的检测性能评价指标 |
Tab.1 Evaluation index of detection performance of each model in ablation experiment |
|
编号 | 模型 | mAP $ {}_{50} $/% | mAP $ {}_{50:95} $/% | NP/106 | O | F/(帧·s−1) | M/% | E/% | 1 | YOLOv5s | 33.2 | 16.7 | 6.978 | 15.5 | 125 | 57.5 | 47.2 | 2 | YOLOv5s+LM-fem | 33.9 | 17.5 | 6.920 | 14.9 | 130 | 55.0 | 45.3 | 3 | YOLOv5s+CBAMbackbone | 34.7 | 18.5 | 7.556 | 17.5 | 98 | 54.2 | 42.8 | 4 | YOLOv5s+S-ECAbackbone | 35.9 | 20.4 | 7.540 | 17.2 | 105 | 52.5 | 39.5 | 5 | YOLOv5s+AFFneck | 37.1 | 22.3 | 7.015 | 15.9 | 111 | 50.2 | 37.0 | 6 | YOLOv5s+ $ \mathrm{S}\mathrm{A}\_\mathrm{P}\mathrm{A}\mathrm{N}\mathrm{e}\mathrm{t} $neck | 37.8 | 22.9 | 8.135 | 18.4 | 95 | 48.9 | 35.2 | 7 | YOLOv5s+Focal-EIOU[15] | 33.5 | 17.2 | 7.322 | 16.1 | 120 | 56.6 | 45.8 | 8 | LSA_YOLO | 41.1 | 25.5 | 9.038 | 20.2 | 50 | 45.7 | 31.5 |
|
|
|