基于Transformer的高效自适应语义分割网络
|
|
张海波,蔡磊,任俊平,王汝言,刘富
|
Efficient and adaptive semantic segmentation network based on Transformer
|
|
Hai-bo ZHANG,Lei CAI,Jun-ping REN,Ru-yan WANG,Fu LIU
|
|
| 表 4 不同分割模型在ADE20K数据集、Cityscapes数据集上推理速度的评估结果 |
| Tab.4 Evaluation results of inference speed for different segmentation models on ADE20K dataset and Cityscapes dataset |
|
| 算法 | 基础网络结构 | FPS/(帧 $\cdot {{\rm{s}}^{ - 1} }$) | | ADE20K | Citysapes | | FCN[1] | ResNet-101[19] | 20.7 | 1.7 | | PSPNet[3] | ResNet-101 | 20.3 | 1.8 | | DeepLabV3+[7] | ResNet-101 | 18.7 | 1.6 | | DeepLabV3+ | ResNeSt-101[21] | 16.1 | 2.5 | | UperNet[22] | Swin-S[24] | 20.1 | — | | UperNet | Convnext[25] | 17.1 | — | | SETR[11] | ViT[12] | 8.3 | — | | DPT[27] | ViT | 20.5 | — | | Segmenter Mask[28] | ViT | 21.3 | — | | Segformer[20] | MiT[20] | 18.6 | 2.5 | | EA-Former | MiT | 21.9 | 2.8 | | Segformer* | MiT | 15.7 | — | | EA-Former* | MiT | 18.1 | — | | UperNet | ResNet-101 | — | 2.3 | | CCnet[9] | ResNet-101 | — | 1.7 | | DeepLabV3[6] | ResNeSt-101 | — | 2.4 | | SETR | ViT | — | 0.4 | | Segformer# | MiT | — | 2.3 | | EA-Former# | MiT | — | 2.5 |
|
|
|