基于Transformer的高效自适应语义分割网络
张海波,蔡磊,任俊平,王汝言,刘富

Efficient and adaptive semantic segmentation network based on Transformer
Hai-bo ZHANG,Lei CAI,Jun-ping REN,Ru-yan WANG,Fu LIU
表 1 不同分割模型在ADE20K数据集上的模型评估结果
Tab.1 Model evaluation results of different segmentation models on ADE20K dataset
算法 基础网络结构 N/106 GFLOPs mIoU/
%
FCN[1] ResNet-101[19] 68.6 275.7 39.9
PSPNet[3] ResNet-101 68.1 256.4 44.3
DeepLab-V3+[7] ResNet-101 62.7 255.1 45.4
DeepLab-V3+ ResNeSt-101[21] 66.3 262.9 46.9
UperNet[22] DeiT[23] 120.5 90.1 45.3
UperNet Swin-S[24] 81.0 259.3 49.3
UperNet Convnext[25] 60.2 234.6 46.1
UperNet Focal-B[26] 126.0 49.0
SETR[11] ViT[12] 318.5 213.6 47.3
DPT[27] ViT 109.7 171.0 46.9
Segmenter Mask[28] ViT 102.5 71.1 49.6
Semantic FPN[29] PVTv2-B3[30] 49.0 62.0 47.3
Semantic FPN VAN-B3[31] 49.0 68.0 48.1
SeMask-B FPN[32] SeMask Swin 96.0 107.0 49.4
Segformer[20] MiT[20] 83.9 110.5 50.1
EA-Former MiT 136.4 61.3 49.3
Segformer* MiT 83.9 172.7 52.1
EA-Former* MiT 136.4 95.8 51.0