基于Transformer的高效自适应语义分割网络
|
张海波,蔡磊,任俊平,王汝言,刘富
|
Efficient and adaptive semantic segmentation network based on Transformer
|
Hai-bo ZHANG,Lei CAI,Jun-ping REN,Ru-yan WANG,Fu LIU
|
|
表 1 不同分割模型在ADE20K数据集上的模型评估结果 |
Tab.1 Model evaluation results of different segmentation models on ADE20K dataset |
|
算法 | 基础网络结构 | N/106 | GFLOPs | mIoU/ % | FCN[1] | ResNet-101[19] | 68.6 | 275.7 | 39.9 | PSPNet[3] | ResNet-101 | 68.1 | 256.4 | 44.3 | DeepLab-V3+[7] | ResNet-101 | 62.7 | 255.1 | 45.4 | DeepLab-V3+ | ResNeSt-101[21] | 66.3 | 262.9 | 46.9 | UperNet[22] | DeiT[23] | 120.5 | 90.1 | 45.3 | UperNet | Swin-S[24] | 81.0 | 259.3 | 49.3 | UperNet | Convnext[25] | 60.2 | 234.6 | 46.1 | UperNet | Focal-B[26] | 126.0 | — | 49.0 | SETR[11] | ViT[12] | 318.5 | 213.6 | 47.3 | DPT[27] | ViT | 109.7 | 171.0 | 46.9 | Segmenter Mask[28] | ViT | 102.5 | 71.1 | 49.6 | Semantic FPN[29] | PVTv2-B3[30] | 49.0 | 62.0 | 47.3 | Semantic FPN | VAN-B3[31] | 49.0 | 68.0 | 48.1 | SeMask-B FPN[32] | SeMask Swin | 96.0 | 107.0 | 49.4 | Segformer[20] | MiT[20] | 83.9 | 110.5 | 50.1 | EA-Former | MiT | 136.4 | 61.3 | 49.3 | Segformer* | MiT | 83.9 | 172.7 | 52.1 | EA-Former* | MiT | 136.4 | 95.8 | 51.0 |
|
|
|