基于集成学习与深度学习的日供水量预测方法
周欣磊,顾海挺,刘晶,许月萍,耿芳,王冲

Daily water supply prediction method based on integrated learning and deep learning
Xin-lei ZHOU,Hai-ting GU,Jing LIU,Yue-ping XU,Fang GENG,Chong WANG
表 7 4座水厂不同供水预测方法的性能对比
Tab.7 Performance comparison of different water supply forecasting models for four water plants
方法 赤岸水厂 大陈水厂 佛堂水厂 中心水厂
NSE MAE/
(m3·d−1)
RMSE/
(m3·d−1)
NSE MAE/
(m3·d−1)
RMSE/
(m3·d−1)
NSE MAE/
(m3·d−1)
RMSE/
(m3·d−1)
NSE MAE/
(m3·d−1)
RMSE/
(m3·d−1)
RF 0.852 171.5 239.1 0.943 499.5 674.0 0.897 1 205.1 1 812.2 0.894 1 122.7 1 827.5
AdaBoost 0.844 187.8 245.2 0.892 791.9 929.8 0.816 1 587.6 2 420.7 0.836 1 611.3 2 275.0
LSTM 0.900 158.3 196.1 0.961 475.9 557.7 0.913 1 190.0 1 662.0 0.905 1 258.9 1 733.6
改进LSTM 0.929 118.4 165.2 0.971 402.2 484.8 0.925 1 131.8 1 545.2 0.924 1 113.9 1 547.2