基于集成学习与深度学习的日供水量预测方法
|
周欣磊,顾海挺,刘晶,许月萍,耿芳,王冲
|
Daily water supply prediction method based on integrated learning and deep learning
|
Xin-lei ZHOU,Hai-ting GU,Jing LIU,Yue-ping XU,Fang GENG,Chong WANG
|
|
表 6 不同弱预测器个数的改进LSTM方法性能对比 |
Tab.6 Performance comparison of improved LSTM models with different number of weak predictors |
|
N | NSE | 第1次 | 第2次 | 第3次 | 第4次 | 第5次 | 平均值 | 2 | 0.897 | 0.898 | 0.894 | 0.883 | 0.896 | 0.894 | 3 | 0.852 | 0.853 | 0.849 | 0.839 | 0.851 | 0.849 | 4 | 0.839 | 0.842 | 0.835 | 0.829 | 0.840 | 0.837 | 5 | 0.831 | 0.836 | 0.831 | 0.824 | 0.836 | 0.832 | 6 | 0.830 | 0.833 | 0.830 | 0.822 | 0.833 | 0.830 | 7 | 0.830 | 0.832 | 0.828 | 0.822 | 0.830 | 0.828 | 8 | 0.796 | 0.824 | 0.815 | 0.826 | 0.793 | 0.811 | 9 | 0.772 | 0.827 | 0.786 | 0.810 | 0.793 | 0.798 | 10 | 0.775 | 0.810 | 0.790 | 0.811 | 0.779 | 0.793 |
|
|
|