基于卷积循环神经网络的芯片表面字符识别
熊帆,陈田,卞佰成,刘军

Chip surface character recognition based on convolutional recurrent neural network
Fan XIONG,Tian CHEN,Bai-cheng BIAN,Jun LIU
表 3 CRNN各项改进的对比测试结果
Tab.3 Comparative test results of CRNN improvements
模型形态 A/% T/ms
原始CRNN 67.353 25.04
CNN改进后 74.068 14.58
LSTM改进后 78.474 19.14
损失函数改进后 90.751 23.90
综合改进后 94.831 11.85