基于距离度量损失框架的半监督学习方法
|
刘半藤,叶赞挺,秦海龙,王柯,郑启航,王章权
|
Semi-supervised learning method based on distance metric loss framework
|
Ban-teng LIU,Zan-ting YE,Hai-long QIN,Ke WANG,Qi-hang ZHENG,Zhang-quan WANG
|
|
表 2 各方法在CIFAR-10、CIFAR-100、SVHN、STL-10数据集中的准确率 |
Tab.2 Accuracy of each method on CIFAR-10, CIFAR-100, SVHN, STL-10 datasets |
|
方法 | CIFAR-10 | | CIFAR-100 | | SVHN | | STL-10 | Nl = 40 | Nl = 250 | Nl = 4000 | Nl = 400 | Nl = 1000 | Nl = 10000 | Nl = 40 | Nl = 250 | Nl = 4000 | Nl = 1000 | Nl = 5000 | VAT | 27.41 | 53.97 | 82.59 | | 5.12 | 12.89 | 53.20 | | 35.64 | 79.78 | 90.06 | | 68.77 | 81.26 | MeanTeacher | 26.54 | 55.52 | 83.79 | | 4.94 | 12.13 | 55.13 | | 36.45 | 78.43 | 93.58 | | 69.01 | 82.80 | MixMatch | 41.47 | 74.08 | 90.74 | | 9.15 | 32.39 | 65.87 | | 47.45 | 76.02 | 93.50 | | 79.59 | 88.41 | Remixmatch | 42.32 | 78.71 | 92.20 | | 12.98 | 44.56 | 72.33 | | 52.55 | 81.92 | 94.67 | | 84.33 | 92.89 | UDA | 44.55 | 81.66 | 92.45 | | 10.66 | 40.72 | 71.18 | | 47.37 | 84.31 | 95.54 | | 82.34 | 92.74 | UDA_unify | 49.69 | 84.22 | 93.87 | | 18.06 | 46.12 | 72.67 | | 53.14 | 87.32 | 95.77 | | 87.21 | 94.34 | Fixmatch | 50.17 | 86.28 | 93.11 | | 12.65 | 42.95 | 72.08 | | 56.41 | 88.75 | 95.94 | | 89.68 | 94.58 | Fixmatch_unify | 55.24 | 89.94 | 94.74 | | 18.51 | 47.79 | 73.38 | | 65.86 | 90.09 | 96.02 | | 93.44 | 95.25 | Flexmatch | 52.70 | 85.08 | 93.97 | | 27.22 | 55.12 | 77.84 | | 62.03 | 90.42 | 95.83 | | 92.36 | 96.06 | Unify Loss | 61.19 | 90.33 | 94.25 | | 35.35 | 61.75 | 78.11 | | 67.35 | 92.47 | 96.17 | | 93.42 | 96.51 |
|
|
|