基于距离度量损失框架的半监督学习方法
刘半藤,叶赞挺,秦海龙,王柯,郑启航,王章权

Semi-supervised learning method based on distance metric loss framework
Ban-teng LIU,Zan-ting YE,Hai-long QIN,Ke WANG,Qi-hang ZHENG,Zhang-quan WANG
表 2 各方法在CIFAR-10、CIFAR-100、SVHN、STL-10数据集中的准确率
Tab.2 Accuracy of each method on CIFAR-10, CIFAR-100, SVHN, STL-10 datasets
方法 CIFAR-10 CIFAR-100 SVHN STL-10
Nl = 40 Nl = 250 Nl = 4000 Nl = 400 Nl = 1000 Nl = 10000 Nl = 40 Nl = 250 Nl = 4000 Nl = 1000 Nl = 5000
VAT 27.41 53.97 82.59 5.12 12.89 53.20 35.64 79.78 90.06 68.77 81.26
MeanTeacher 26.54 55.52 83.79 4.94 12.13 55.13 36.45 78.43 93.58 69.01 82.80
MixMatch 41.47 74.08 90.74 9.15 32.39 65.87 47.45 76.02 93.50 79.59 88.41
Remixmatch 42.32 78.71 92.20 12.98 44.56 72.33 52.55 81.92 94.67 84.33 92.89
UDA 44.55 81.66 92.45 10.66 40.72 71.18 47.37 84.31 95.54 82.34 92.74
UDA_unify 49.69 84.22 93.87 18.06 46.12 72.67 53.14 87.32 95.77 87.21 94.34
Fixmatch 50.17 86.28 93.11 12.65 42.95 72.08 56.41 88.75 95.94 89.68 94.58
Fixmatch_unify 55.24 89.94 94.74 18.51 47.79 73.38 65.86 90.09 96.02 93.44 95.25
Flexmatch 52.70 85.08 93.97 27.22 55.12 77.84 62.03 90.42 95.83 92.36 96.06
Unify Loss 61.19 90.33 94.25 35.35 61.75 78.11 67.35 92.47 96.17 93.42 96.51