基于改进YOLOv3的印刷电路板缺陷检测算法
卞佰成,陈田,吴入军,刘军

Improved YOLOv3-based defect detection algorithm for printed circuit board
Bai-cheng BIAN,Tian CHEN,Ru-jun WU,Jun LIU
表 6 PCB缺陷数据集上不同算法的参数对比和检测精度测试结果
Tab.6 Parameter comparison and detection accuracy test results of different algorithms on PCB defect dataset
网络模型 主干网络 NP/106 AP,AR/% AP0.5/% AP0.75/% GFLOPs
Faster R-CNN[12] VGG-16 58.57
Faster R-CNN[12] ResNet-101 94.27
FPN[12] ResNet-101 92.23
Faster R-CNN(fine-tuned)[12] ResNet-101 96.44
TDD-Net[12] ResNet-101 98.90
YOLOv3[12] DarkNet53 81.42
YOLOv3-ultralytics DarkNet53 62.999 58.78,33.05 96.71 64.64 66.5
YOLOv5m CSP-DarkNet53 21.077 61.17,34.27 98.43 68.21 32.3
YOLOv5l CSP-DarkNet53 46.658 64.88,35.77 98.95 75.45 73.2
本文算法 ResNeSt50 35.227 64.53,35.49 98.42 76.23 45.9