基于改进YOLOv3的印刷电路板缺陷检测算法
|
卞佰成,陈田,吴入军,刘军
|
Improved YOLOv3-based defect detection algorithm for printed circuit board
|
Bai-cheng BIAN,Tian CHEN,Ru-jun WU,Jun LIU
|
|
表 6 PCB缺陷数据集上不同算法的参数对比和检测精度测试结果 |
Tab.6 Parameter comparison and detection accuracy test results of different algorithms on PCB defect dataset |
|
网络模型 | 主干网络 | NP/106 | AP,AR/% | AP0.5/% | AP0.75/% | GFLOPs | Faster R-CNN[12] | VGG-16 | — | — | 58.57 | — | — | Faster R-CNN[12] | ResNet-101 | — | — | 94.27 | — | — | FPN[12] | ResNet-101 | — | — | 92.23 | — | — | Faster R-CNN(fine-tuned)[12] | ResNet-101 | — | — | 96.44 | — | — | TDD-Net[12] | ResNet-101 | — | — | 98.90 | — | — | YOLOv3[12] | DarkNet53 | — | — | 81.42 | — | — | YOLOv3-ultralytics | DarkNet53 | 62.999 | 58.78,33.05 | 96.71 | 64.64 | 66.5 | YOLOv5m | CSP-DarkNet53 | 21.077 | 61.17,34.27 | 98.43 | 68.21 | 32.3 | YOLOv5l | CSP-DarkNet53 | 46.658 | 64.88,35.77 | 98.95 | 75.45 | 73.2 | 本文算法 | ResNeSt50 | 35.227 | 64.53,35.49 | 98.42 | 76.23 | 45.9 |
|
|
|