基于强化学习和3σ准则的组合剪枝方法
|
徐少铭,李钰,袁晴龙
|
Combination pruning method based on reinforcement learning and 3σ criterion
|
Shao-ming XU,Yu LI,Qing-long YUAN
|
|
表 2 VGG16全连接层不同阈值下的实验结果 |
Tab.2 Experimental results of different thresholds on VGG16 fully connected layer |
|
阈值 | 全连接层 | t | pa/MB | af/% | pp/% | ∆p/% | μ | Fc1 | 0.001 9 | 15.32 | 44.28 | 91.88 | −1.82 | Fc2 | 0.000 2 | Fc3 | 0.007 0 | σ | Fc1 | 0.002 5 | 7.04 | 50.75 | 91.97 | −1.73 | Fc2 | 0.000 9 | Fc3 | 0.018 7 | μ+σ | Fc1 | 0.004 4 | 4.48 | 52.74 | 92.42 | −1.28 | Fc2 | 0.001 2 | Fc3 | 0.024 8 | μ+2σ | Fc1 | 0.007 3 | 2.12 | 54.57 | 92.31 | −1.39 | Fc2 | 0.002 2 | Fc3 | 0.043 9 | μ+3σ | Fc1 | 0.009 6 | 1.00 | 55.34 | 92.27 | −1.43 | Fc2 | 0.003 2 | Fc3 | 0.063 1 |
|
|
|