基于强化学习和3σ准则的组合剪枝方法
徐少铭,李钰,袁晴龙

Combination pruning method based on reinforcement learning and 3σ criterion
Shao-ming XU,Yu LI,Qing-long YUAN
表 1 VGG16的各卷积层剪枝结果
Tab.1 Every convolutional layer pruning result of VGG16
卷积层 pt/kB ac/%
conv1-1 6.752 2.0
conv1-2 144 3.0
conv2-1 288 10.0
conv2-2 576 15.0
conv3-1 1 152 38.0
conv3-2 2 304 56.0
conv3-3 2 304 80.0
conv4-1 4 608 80.0
conv4-2 9 216 80.0
conv4-3 9 216 80.0
conv5-1 9 216 80.0
conv5-2 9 216 80.0
conv5-3 9 216 80.0
总计 57 479.25 76.4