融合用户感知和多因素的兴趣点推荐
|
卢巧杰,王楠,李金宝,李坤
|
Point-of-interest recommendation integrating user perception and multi-factor
|
Qiao-jie LU,Nan WANG,Jin-bao LI,Kun LI
|
|
表 3 UPMF模型与其变体模型在Gowalla和Yelp数据集上的P@N、R@N和NDCG@N性能比较 |
Tab.3 Performance comparison of P@N、R@N and NDCG@N between UPMF model and its variant models on Gowalla and Yelp datasets |
|
对比模型 | Gowalla | | Yelp | P@10 | P@20 | R@10 | R@20 | NDCG@10 | NDCG@20 | P@10 | P@20 | R@10 | R@20 | NDCG@10 | NDCG@20 | UPMF-sim | 0.0555 | 0.0439 | 0.0556 | 0.0860 | 0.0609 | 0.0512 | | 0.0300 | 0.0258 | 0.0444 | 0.0765 | 0.0316 | 0.0282 | UPMF-SGM | 0.0444 | 0.0360 | 0.0438 | 0.0672 | 0.0480 | 0.0411 | 0.0223 | 0.0201 | 0.0320 | 0.0568 | 0.0234 | 0.0215 | UPMF-GM | 0.0539 | 0.0442 | 0.0538 | 0.0865 | 0.0593 | 0.0509 | 0.0300 | 0.0257 | 0.0454 | 0.0764 | 0.0321 | 0.0285 | UPMF-SM | 0.0516 | 0.0422 | 0.0519 | 0.0833 | 0.0566 | 0.0486 | 0.0289 | 0.0252 | 0.0440 | 0.0746 | 0.0311 | 0.0278 | UPMF-UPIS | 0.0550 | 0.0441 | 0.0553 | 0.0866 | 0.0598 | 0.0508 | 0.0306 | 0.0258 | 0.0470 | 0.0774 | 0.0326 | 0.0287 | UPMF | 0.0556 | 0.0445 | 0.0571 | 0.0886 | 0.0618 | 0.0519 | 0.0307 | 0.0267 | 0.0460 | 0.0784 | 0.0326 | 0.0292 |
|
|
|