融合用户感知和多因素的兴趣点推荐
|
卢巧杰,王楠,李金宝,李坤
|
Point-of-interest recommendation integrating user perception and multi-factor
|
Qiao-jie LU,Nan WANG,Jin-bao LI,Kun LI
|
|
表 2 UPMF模型与基线对比模型在Gowalla和Yelp数据集上的P@N、R@N和NDCG@N性能比较 |
Tab.2 Performance comparison of P@N, R@N and NDCG@N between UPMF model and baselines on Gowalla and Yelp datasets |
|
对比模型 | Gowalla | | Yelp | P@10 | P@20 | R@10 | R@20 | NDCG@10 | NDCG@20 | P@10 | P@20 | R@10 | R@20 | NDCG@10 | NDCG@20 | TopPopular | 0.0192 | 0.0146 | 0.0176 | 0.0270 | 0.0088 | 0.0079 | | 0.0077 | 0.0073 | 0.0095 | 0.0185 | 0.0075 | 0.0073 | PFMMGM | 0.0240 | 0.0207 | 0.0258 | 0.0442 | 0.0140 | 0.0144 | 0.0162 | 0.0135 | 0.0242 | 0.0402 | 0.0175 | 0.0152 | LMFT | 0.0315 | 0.0269 | 0.0303 | 0.0515 | 0.0157 | 0.0150 | 0.0183 | 0.0163 | 0.0264 | 0.0457 | 0.0194 | 0.0176 | iGLSR | 0.0297 | 0.0242 | 0.0283 | 0.0441 | 0.0153 | 0.0145 | 0.0235 | 0.0192 | 0.0306 | 0.0529 | 0.0231 | 0.0214 | GeoSoCa | 0.0215 | 0.0195 | 0.0253 | 0.0449 | 0.0222 | 0.0206 | 0.0183 | 0.0150 | 0.0214 | 0.0340 | 0.0195 | 0.0168 | MLP | 0.0243 | 0.0215 | 0.0237 | 0.0396 | 0.0098 | 0.0127 | 0.0203 | 0.0174 | 0.0284 | 0.0157 | 0.0195 | 0.0185 | Rank-GeoFM | 0.0352 | 0.0297 | 0.0379 | 0.0602 | 0.0187 | 0.0179 | 0.0231 | 0.0198 | 0.0316 | 0.0587 | 0.0217 | 0.0214 | L-WMF | 0.0341 | 0.0296 | 0.0351 | 0.0582 | 0.0183 | 0.0178 | 0.0215 | 0.0181 | 0.0295 | 0.0542 | 0.0202 | 0.0194 | LFBCA | 0.0453 | 0.0376 | 0.0460 | 0.0742 | 0.0492 | 0.0427 | 0.0269 | 0.0228 | 0.0408 | 0.0667 | 0.0290 | 0.0255 | CARA | 0.0501 | 0.0410 | 0.0485 | 0.0792 | 0.0531 | 0.0452 | 0.0255 | 0.0219 | 0.0362 | 0.0628 | 0.0271 | 0.0239 | SUCP | 0.0502 | 0.0410 | 0.0520 | 0.0823 | 0.0548 | 0.0470 | 0.0286 | 0.0245 | 0.0438 | 0.0731 | 0.0304 | 0.0270 | UPMF | 0.0556 | 0.0445 | 0.0571 | 0.0886 | 0.0618 | 0.0519 | 0.0307 | 0.0267 | 0.0460 | 0.0784 | 0.0326 | 0.0292 | Imp/% | 10.76 | 8.53 | 9.81 | 7.65 | 12.77 | 10.43 | 7.34 | 8.98 | 5.02 | 7.25 | 7.24 | 8.15 |
|
|
|