融合用户感知和多因素的兴趣点推荐
卢巧杰,王楠,李金宝,李坤

Point-of-interest recommendation integrating user perception and multi-factor
Qiao-jie LU,Nan WANG,Jin-bao LI,Kun LI
表 2 UPMF模型与基线对比模型在Gowalla和Yelp数据集上的P@NR@N和NDCG@N性能比较
Tab.2 Performance comparison of P@N, R@N and NDCG@N between UPMF model and baselines on Gowalla and Yelp datasets
对比模型 Gowalla Yelp
P@10 P@20 R@10 R@20 NDCG@10 NDCG@20 P@10 P@20 R@10 R@20 NDCG@10 NDCG@20
TopPopular 0.0192 0.0146 0.0176 0.0270 0.0088 0.0079 0.0077 0.0073 0.0095 0.0185 0.0075 0.0073
PFMMGM 0.0240 0.0207 0.0258 0.0442 0.0140 0.0144 0.0162 0.0135 0.0242 0.0402 0.0175 0.0152
LMFT 0.0315 0.0269 0.0303 0.0515 0.0157 0.0150 0.0183 0.0163 0.0264 0.0457 0.0194 0.0176
iGLSR 0.0297 0.0242 0.0283 0.0441 0.0153 0.0145 0.0235 0.0192 0.0306 0.0529 0.0231 0.0214
GeoSoCa 0.0215 0.0195 0.0253 0.0449 0.0222 0.0206 0.0183 0.0150 0.0214 0.0340 0.0195 0.0168
MLP 0.0243 0.0215 0.0237 0.0396 0.0098 0.0127 0.0203 0.0174 0.0284 0.0157 0.0195 0.0185
Rank-GeoFM 0.0352 0.0297 0.0379 0.0602 0.0187 0.0179 0.0231 0.0198 0.0316 0.0587 0.0217 0.0214
L-WMF 0.0341 0.0296 0.0351 0.0582 0.0183 0.0178 0.0215 0.0181 0.0295 0.0542 0.0202 0.0194
LFBCA 0.0453 0.0376 0.0460 0.0742 0.0492 0.0427 0.0269 0.0228 0.0408 0.0667 0.0290 0.0255
CARA 0.0501 0.0410 0.0485 0.0792 0.0531 0.0452 0.0255 0.0219 0.0362 0.0628 0.0271 0.0239
SUCP 0.0502 0.0410 0.0520 0.0823 0.0548 0.0470 0.0286 0.0245 0.0438 0.0731 0.0304 0.0270
UPMF 0.0556 0.0445 0.0571 0.0886 0.0618 0.0519 0.0307 0.0267 0.0460 0.0784 0.0326 0.0292
Imp/% 10.76 8.53 9.81 7.65 12.77 10.43 7.34 8.98 5.02 7.25 7.24 8.15