融合图增强和采样策略的图卷积协同过滤模型
|
张京京,张兆功,许鑫
|
Graph convolution collaborative filtering model combining graph enhancement and sampling strategies
|
Jing-jing ZHANG,Zhao-gong ZHANG,Xin XU
|
|
表 2 EL-GCCF和其他方法在2个数据集上的性能比较 |
Tab.2 Performance comparison of EL-GCCF and other methods on two datasets |
|
模型 | Amazon-Books | | MovieLens-1M | Recall@10 | NDCG@10 | Recall@20 | NDCG@20 | | Recall@10 | NDCG@10 | Recall@20 | NDCG@20 | MF-BPR | 0.0607 | 0.0430 | 0.0956 | 0.0536 | | 0.1704 | 0.2044 | 0.2153 | 0.2175 | NeuMF | 0.0507 | 0.0351 | 0.0823 | 0.0447 | 0.1657 | 0.1953 | 0.2106 | 0.2067 | DeepWalk | 0.0286 | 0.02511 | 0.0346 | 0.0264 | 0.1248 | 0.1025 | 0.1348 | 0.1057 | Node2Vec | 0.0301 | 0.2936 | 0.0402 | 0.0309 | 0.1347 | 0.1095 | 0.1475 | 0.1186 | NGCF | 0.0617 | 0.0427 | 0.0978 | 0.0547 | 0.1846 | 0.2328 | 0.2513 | 0.2511 | LightGCN | 0.0797 | 0.0565 | 0.1206 | 0.0689 | 0.1876 | 0.2314 | 0.2576 | 0.2427 | LR-GCCF | 0.0591 | 0.0504 | 0.1135 | 0.0558 | 0.1785 | 0.2051 | 0.2231 | 0.2124 | EL-GCCF | 0.0973 | 0.0643 | 0.1363 | 0.0768 | 0.1925 | 0.2636 | 0.2657 | 0.2882 | Imp/% | 64.64 | 27.58 | 20.01 | 37.63 | | 7.84 | 28.52 | 19.09 | 35.69 |
|
|
|