基于多头自注意力的复杂背景船舶检测算法
|
于楠晶,范晓飚,邓天民,冒国韬
|
Ship detection algorithm in complex backgrounds via multi-head self-attention
|
Nan-jing YU,Xiao-biao FAN,Tian-min DENG,Guo-tao MAO
|
|
表 2 不同卷积神经网络的船舶检测结果对比 |
Tab.2 Comparison of ship detection results of different convolutional neural network |
|
算法 | pma/% | pa/% | OC | BCC | GCS | CS | FB | PS | Faster(VGG16)[21] | 90.12 | 89.44 | 90.34 | 90.73 | 90.87 | 88.76 | 90.57 | Faster(ResNet18)[21] | 90.63 | 90.37 | 89.78 | 90.45 | 90.91 | 87.17 | 88.93 | Faster(ResNet50)[21] | 91.65 | 92.38 | 90.88 | 92.46 | 92.91 | 89.27 | 90.93 | Faster(ResNet101)[21] | 92.40 | 93.68 | 90.22 | 93.87 | 93.41 | 89.96 | 91.78 | SSD300(MobileNet)[21] | 77.66 | 64.77 | 76.69 | 87.43 | 90.77 | 71.00 | 75.32 | SSD300(VGG16)[21] | 79.37 | 75.03 | 76.66 | 87.66 | 90.71 | 71.79 | 74.35 | SSD512(VGG16)[21] | 86.73 | 83.99 | 83.00 | 87.08 | 90.81 | 85.85 | 89.65 | YOLOv2 random=0[21] | 77.51 | 83.01 | 79.36 | 80.60 | 88.90 | 62.70 | 70.48 | YOLOv2 random=1[21] | 79.06 | 83.16 | 82.07 | 83.21 | 88.31 | 64.74 | 72.89 | YOLOv3[23] | 87.00 | 86.00 | 86.20 | 87.10 | 87.10 | 88.00 | 90.00 | YOLOv4[23] | 90.70 | 90.80 | 90.70 | 90.80 | 90.90 | 90.60 | 90.50 | MHSA-YOLO | 97.59 | 98.73 | 98.42 | 96.41 | 96.53 | 98.51 | 96.94 |
|
|
|