基于改进YOLOv5的推力球轴承表面缺陷检测算法
|
|
袁天乐,袁巨龙,朱勇建,郑翰辰
|
Surface defect detection algorithm of thrust ball bearing based on improved YOLOv5
|
|
Tian-le YUAN,Ju-long YUAN,Yong-jian ZHU,Han-chen ZHENG
|
|
| 表 4 添加多头自注意力机制模块检测结果对比 |
| Tab.4 Add multi-head self-attention mechanism module detection result comparison |
|
| 实验 | 模型 | 算法 | AP | F1 | mAP@0.5 | | 划伤 | 压印 | 缺球 | | 1 | 原 | BN | 0.676 | 0.846 | 0.986 | 0.821 | 0.836 | | 2 | 图5(a) | BN | 0.666 | 0.864 | 0.993 | 0.821 | 0.841 | | 3 | 图5(b) | BN | 0.698 | 0.851 | 0.988 | 0.831 | 0.846 | | 4 | 图5(c) | BN | 0.566 | 0.869 | 0.987 | 0.814 | 0.807 | | 5 | 图5(d) | BN | 0.714 | 0.869 | 0.989 | 0.832 | 0.857 | | 6 | 图5(b) | IN | 0.715 | 0.869 | 0.992 | 0.845 | 0.859 | | 7 | 图5(d) | IN | 0.717 | 0.876 | 0.991 | 0.850 | 0.861 |
|
|
|