基于深度强化学习的数控铣削加工参数优化方法
|
邓齐林,鲁娟,陈勇辉,冯健,廖小平,马俊燕
|
Optimization method of CNC milling parameters based on deep reinforcement learning
|
Qi-lin DENG,Juan LU,Yong-hui CHEN,Jian FENG,Xiao-ping LIAO,Jun-yan MA
|
|
表 2 27组Taguchi试验数据的切削力合力和材料去除率 |
Tab.2 Combined cutting force and material removal rates for 27 sets of Taguchi test datas |
|
序号 | n/ ( ${\rm{r}} \cdot {\rm{mi}}{{\rm{n}}^{ - 1} }$) | f/ ( ${{\rm{mm}}} \cdot {{\rm{r}}^{ - 1} }$) | ae/ mm | ap/ mm | Fc/ N | R/ ( ${ {{\rm{mm}}} ^3} \cdot {\min ^{ - 1} }$) | 1 | 1 500 | 0.08 | 2 | 0.2 | 17.241 | 48.0 | 2 | 1 500 | 0.08 | 4 | 0.4 | 33.117 | 192.0 | 3 | 1 500 | 0.08 | 6 | 0.6 | 44.120 | 432.0 | 4 | 1 500 | 0.10 | 2 | 0.6 | 44.246 | 180.0 | 5 | 1 500 | 0.10 | 4 | 0.2 | 23.873 | 120.0 | 6 | 1 500 | 0.10 | 6 | 0.4 | 33.256 | 360.0 | 7 | 1 500 | 0.12 | 2 | 0.4 | 35.638 | 144.0 | 8 | 1 500 | 0.12 | 4 | 0.6 | 53.547 | 432.0 | 9 | 1 500 | 0.12 | 6 | 0.2 | 25.398 | 216.0 | 10 | 1 900 | 0.08 | 2 | 0.6 | 38.787 | 182.4 | 11 | 1 900 | 0.08 | 4 | 0.2 | 21.276 | 121.6 | 12 | 1 900 | 0.08 | 6 | 0.4 | 27.223 | 364.8 | 13 | 1 900 | 0.10 | 2 | 0.4 | 29.856 | 152.0 | 14 | 1 900 | 0.10 | 4 | 0.6 | 49.820 | 456.0 | 15 | 1 900 | 0.10 | 6 | 0.2 | 19.837 | 228.0 | 16 | 1 900 | 0.12 | 2 | 0.2 | 22.726 | 91.2 | 17 | 1 900 | 0.12 | 4 | 0.4 | 37.849 | 364.8 | 18 | 1 900 | 0.12 | 6 | 0.6 | 45.732 | 820.8 | 19 | 2 300 | 0.08 | 2 | 0.4 | 42.285 | 147.2 | 20 | 2 300 | 0.08 | 4 | 0.6 | 65.958 | 441.6 | 21 | 2 300 | 0.08 | 6 | 0.2 | 32.286 | 220.8 | 22 | 2 300 | 0.10 | 2 | 0.2 | 26.537 | 92.00 | 23 | 2 300 | 0.10 | 4 | 0.4 | 52.899 | 368.0 | 24 | 2 300 | 0.10 | 6 | 0.6 | 70.342 | 828.0 | 25 | 2 300 | 0.12 | 2 | 0.6 | 62.847 | 331.2 | 26 | 2 300 | 0.12 | 4 | 0.2 | 44.824 | 220.8 | 27 | 2 300 | 0.12 | 6 | 0.4 | 50.243 | 662.4 |
|
|
|