基于深度强化学习的数控铣削加工参数优化方法
邓齐林,鲁娟,陈勇辉,冯健,廖小平,马俊燕

Optimization method of CNC milling parameters based on deep reinforcement learning
Qi-lin DENG,Juan LU,Yong-hui CHEN,Jian FENG,Xiao-ping LIAO,Jun-yan MA
表 2 27组Taguchi试验数据的切削力合力和材料去除率
Tab.2 Combined cutting force and material  removal  rates for 27 sets of Taguchi test datas
序号 n/
( ${\rm{r}} \cdot {\rm{mi}}{{\rm{n}}^{ - 1} }$)
f/
( ${{\rm{mm}}} \cdot {{\rm{r}}^{ - 1} }$)
ae/
mm
ap/
mm
Fc/
N
R/
( ${ {{\rm{mm}}} ^3} \cdot {\min ^{ - 1} }$)
1 1 500 0.08 2 0.2 17.241 48.0
2 1 500 0.08 4 0.4 33.117 192.0
3 1 500 0.08 6 0.6 44.120 432.0
4 1 500 0.10 2 0.6 44.246 180.0
5 1 500 0.10 4 0.2 23.873 120.0
6 1 500 0.10 6 0.4 33.256 360.0
7 1 500 0.12 2 0.4 35.638 144.0
8 1 500 0.12 4 0.6 53.547 432.0
9 1 500 0.12 6 0.2 25.398 216.0
10 1 900 0.08 2 0.6 38.787 182.4
11 1 900 0.08 4 0.2 21.276 121.6
12 1 900 0.08 6 0.4 27.223 364.8
13 1 900 0.10 2 0.4 29.856 152.0
14 1 900 0.10 4 0.6 49.820 456.0
15 1 900 0.10 6 0.2 19.837 228.0
16 1 900 0.12 2 0.2 22.726 91.2
17 1 900 0.12 4 0.4 37.849 364.8
18 1 900 0.12 6 0.6 45.732 820.8
19 2 300 0.08 2 0.4 42.285 147.2
20 2 300 0.08 4 0.6 65.958 441.6
21 2 300 0.08 6 0.2 32.286 220.8
22 2 300 0.10 2 0.2 26.537 92.00
23 2 300 0.10 4 0.4 52.899 368.0
24 2 300 0.10 6 0.6 70.342 828.0
25 2 300 0.12 2 0.6 62.847 331.2
26 2 300 0.12 4 0.2 44.824 220.8
27 2 300 0.12 6 0.4 50.243 662.4