基于并行架构和时空注意力机制的心电分类方法
|
彭向东,潘从成,柯泽浚,朱华强,周肖
|
Classification method for electrocardiograph signals based on parallel architecture model and spatial-temporal attention mechanism
|
Xiang-dong PENG,Cong-cheng PAN,Ze-jun KE,Hua-qiang ZHU,Xiao ZHOU
|
|
表 5 本文方法与其他方法的分类效果对比 |
Tab.5 Comparison of classification performance by proposed network and other methods |
|
方法 | 类别 | 方法 | OA/% | Spe/% | Sen/% | Macro-F1/% | 文献[19]方法 | 5 | CNN-LSTM | 98.10 | 98.70 | 97.50 | — | 文献[30]方法 | 5 | FCMDBN | 96.54 | — | 98.32 | — | 文献[31]方法 | 8 | 4-layer LSTM | 99.26 | 99.14 | 99.26 | — | 文献[32]方法 | 5 | CAE + LSTM | 99.23 | — | — | — | 文献[20]方法 | 5 | STFT + 2-DCNN | 99.0 | — | — | — | 文献[18]方法 | 5 | CNN + BLSTM | 95.90 | — | 95.90 | 95.92 | 文献[21]方法 | 4 | CNN + BLSTM | 99.56 | 99.47 | 95.90 | 96.40 | 文献[27]方法 | 5 | HCRNet | 98.70 | — | 99.28 | 99.38 | 本文方法 | 5 | PSTA- Net | 99.50 | 99.61 | 96.20 | 97.08 |
|
|
|