融合多尺度和多头注意力的医疗图像分割方法
|
王万良,王铁军,陈嘉诚,尤文波
|
Medical image segmentation method combining multi-scale and multi-head attention
|
Wan-liang WANG,Tie-jun WANG,Jia-cheng CHEN,Wen-bo YOU
|
|
表 9 不同算法在ISBI 2017数据集上的分割性能对比 |
Tab.9 Comparison of segmentation performance of different algorithms on ISBI 2017 dataset |
|
% | 方法 | JA | DI | ACC | SEN | SPE | TJI | U-Net | 72.81 | 81.78 | 92.23 | 80.36 | 97.33 | 60.83 | Attention U-Net | 72.93 | 81.89 | 92.10 | 81.72 | 96.97 | 61.27 | Swin-Unet | 66.04 | 75.61 | 90.46 | 79.11 | 93.81 | 52.58 | RAUNet | 77.26 | 85.49 | 93.68 | 83.48 | 97.50 | 69.47 | SFUNet | 76.15 | 84.57 | 93.38 | 82.98 | 96.83 | 67.01 | DeepLab v3+ (Xception) | 77.37 | 85.67 | 93.61 | 83.96 | 96.90 | 69.10 | CE-Net | 77.46 | 85.43 | 93.68 | 83.84 | 97.12 | 70.49 | CA-Net | 77.16 | 85.38 | 93.13 | 85.80 | 95.53 | 68.56 | UTNet | 77.47 | 85.51 | 93.55 | 87.15 | 95.48 | 70.10 | MS-Dual-Guided | 76.48 | 84.72 | 92.65 | 87.11 | 94.54 | 68.17 | MS2Net | 78.43 | 86.28 | 93.81 | 85.96 | 96.72 | 71.60 |
|
|
|