融合多尺度和多头注意力的医疗图像分割方法
|
王万良,王铁军,陈嘉诚,尤文波
|
Medical image segmentation method combining multi-scale and multi-head attention
|
Wan-liang WANG,Tie-jun WANG,Jia-cheng CHEN,Wen-bo YOU
|
|
表 10 不同算法在CVC-ColonDB数据集上的分割性能对比 |
Tab.10 Comparison of segmentation performance of different algorithms on CVC-ColonDB dataset |
|
% | 方法 | JA | DI | ACC | SEN | U-Net | 76.70±1.73 | 83.97±1.71 | 97.85±0.19 | 84.12±3.10 | Attention U-Net | 76.71±3.00 | 83.65±2.95 | 97.98±0.40 | 83.61±3.35 | Swin-Unet | 34.36±2.62 | 44.84±2.92 | 92.05±0.65 | 54.79±2.43 | RAUNet | 82.41±1.79 | 88.81±1.89 | 98.63±0.20 | 89.12±1.71 | SFUNet | 80.12±0.79 | 87.23±0.81 | 98.32±0.13 | 87.86±1.77 | DeepLab v3+ (Xception) | 79.34±1.24 | 85.61±1.41 | 98.52±0.10 | 86.19±1.38 | CE-Net | 81.71±1.65 | 87.95±1.77 | 98.50±0.08 | 88.79±2.08 | CA-Net | 76.01±1.60 | 83.73±1.63 | 97.57±0.29 | 85.35±1.93 | UTNet | 78.39±2.32 | 85.51±2.30 | 98.20±0.21 | 85.96±2.68 | MS2Net | 82.83±1.71 | 89.19±1.89 | 98.52±0.22 | 89.68±1.95 |
|
|
|