基于多尺度特征与注意力机制的轴承寿命预测
|
|
莫仁鹏,司小胜,李天梅,朱旭
|
Bearing life prediction based on multi-scale features and attention mechanism
|
|
Ren-peng MO,Xiao-sheng SI,Tian-mei LI,Xu ZHU
|
|
| 表 2 网络超参数 |
| Tab.2 Network hyperparameters |
|
| 网络模块 | 网络层 | 超参数设置 | | 注意力模块 | 全连接层 | U = K | | CNN模块 | 卷积层1 | n = 32,k = 6,s = 1 | | CNN模块 | 卷积层2 | n = 64,k = 6,s = 1 | | CNN模块 | 卷积层3 | n = 64,k = 6,s = 1 | | CNN模块 | 卷积层4 | n = 64,k = 6,s = 1 | | FNN模块 | 隐藏层1 | U = 100 | | FNN模块 | dropout层 | r = 0.2 | | FNN模块 | 隐藏层2 | U = 20 | | FNN模块 | 输出层 | U = 1 |
|
|
|