基于图卷积网络的归纳式微博谣言检测新方法
|
王友卫,童爽,凤丽洲,朱建明,李洋,陈福
|
New inductive microblog rumor detection method based on graph convolutional network
|
You-wei WANG,Shuang TONG,Li-zhou FENG,Jian-ming ZHU,Yang LI,Fu CHEN
|
|
表 6 最优评论利用时间阈值有效性验证 |
Tab.6 Validation of effectiveness of optimal comment utilization time threshold |
|
方法 | Ma_Dataset | | Song_Dataset | Acc | Pre | Rec | F1 | Acc | Pre | Rec | F1 | DT-Rank | 0.723 | 0.728 | 0.725 | 0.726 | | 0.647 | 0.635 | 0.669 | 0.652 | SVM-TS | 0.824 | 0.810 | 0.817 | 0.813 | 0.743 | 0.753 | 0.764 | 0.758 | Text-CNN | 0.839 | 0.833 | 0.849 | 0.841 | 0.800 | 0.813 | 0.809 | 0.811 | GRU-2 | 0.899 | 0.896 | 0.885 | 0.890 | 0.839 | 0.835 | 0.847 | 0.841 | dEFEND | 0.915 | 0.913 | 0.931 | 0.922 | 0.877 | 0.869 | 0.899 | 0.883 | Text-GCN | 0.925 | 0.916 | 0.913 | 0.914 | 0.892 | 0.887 | 0.880 | 0.883 | Bi-GCN | 0.928 | 0.933 | 0.921 | 0.927 | 0.902 | 0.895 | 0.911 | 0.903 | GLAN | 0.929 | 0.936 | 0.930 | 0.933 | 0.902 | 0.907 | 0.916 | 0.911 | TextING | 0.937 | 0.936 | 0.939 | 0.937 | 0.909 | 0.908 | 0.911 | 0.909 | 本研究方法 | 0.945 | 0.938 | 0.941 | 0.940 | 0.921 | 0.920 | 0.925 | 0.923 |
|
|
|