基于图卷积网络的归纳式微博谣言检测新方法
|
王友卫,童爽,凤丽洲,朱建明,李洋,陈福
|
New inductive microblog rumor detection method based on graph convolutional network
|
You-wei WANG,Shuang TONG,Li-zhou FENG,Jian-ming ZHU,Yang LI,Fu CHEN
|
|
表 5 本研究所提方法与现有典型方法的微博谣言检测结果对比 |
Tab.5 Comparison of microblog rumor detection results of proposed method and existing typical methods |
|
方法 | Ma_Dataset | | Song_Dataset | Acc | Pre | Rec | F1 | Acc | Pre | Rec | F1 | DT-Rank | 0.727 | 0.736 | 0.731 | 0.733 | | 0.653 | 0.637 | 0.665 | 0.651 | SVM-TS | 0.829 | 0.814 | 0.823 | 0.818 | 0.746 | 0.751 | 0.761 | 0.756 | Text-CNN | 0.848 | 0.839 | 0.854 | 0.846 | 0.801 | 0.807 | 0.812 | 0.809 | GRU-2 | 0.902 | 0.895 | 0.891 | 0.893 | 0.842 | 0.837 | 0.846 | 0.841 | dEFEND | 0.917 | 0.912 | 0.929 | 0.920 | 0.881 | 0.873 | 0.898 | 0.885 | Text-GCN | 0.924 | 0.915 | 0.919 | 0.917 | 0.889 | 0.892 | 0.885 | 0.888 | Bi-GCN | 0.929 | 0.931 | 0.924 | 0.927 | 0.901 | 0.897 | 0.906 | 0.901 | GLAN | 0.930 | 0.935 | 0.932 | 0.933 | 0.903 | 0.908 | 0.912 | 0.910 | TextING | 0.938 | 0.937 | 0.943 | 0.940 | 0.912 | 0.906 | 0.915 | 0.910 | 本研究方法 | 0.946 | 0.939 | 0.943 | 0.941 | 0.923 | 0.925 | 0.922 | 0.923 |
|
|
|