IncepA-EEGNet: 融合Inception网络和注意力机制的P300信号检测方法
|
许萌,王丹,李致远,陈远方
|
IncepA-EEGNet: P300 signal detection method based on fusion of Inception network and attention mechanism
|
Meng XU,Dan WANG,Zhi-yuan LI,Yuan-fang CHEN
|
|
表 6 IncepA-EEGNet 模型与其他方法的字符识别率 |
Tab.6 Character recognition rate of IncepA-EEGNet model and other methods |
|
方法 | 受试者 | Pc/% | n = 1 | n = 2 | n = 3 | n = 4 | n = 5 | n = 6 | n = 7 | n = 8 | n = 9 | n = 10 | n = 11 | n = 12 | n = 13 | n = 14 | n = 15 | | CNN-1[10] | A | 16 | 33 | 47 | 52 | 61 | 65 | 77 | 78 | 85 | 86 | 90 | 91 | 91 | 93 | 97 | | CNN-1[10] | B | 35 | 52 | 59 | 68 | 79 | 81 | 82 | 89 | 92 | 91 | 91 | 90 | 91 | 92 | 92 | | MCNN-1[10] | A | 18 | 31 | 50 | 54 | 61 | 68 | 76 | 76 | 79 | 82 | 89 | 92 | 91 | 93 | 97 | | MCNN-1[10] | B | 39 | 55 | 62 | 64 | 77 | 79 | 86 | 92 | 91 | 92 | 95 | 95 | 95 | 94 | 94 | | MCNN-3[10] | A | 17 | 35 | 50 | 55 | 63 | 67 | 78 | 79 | 84 | 85 | 91 | 90 | 92 | 94 | 97 | | MCNN-3[10] | B | 34 | 56 | 60 | 68 | 74 | 80 | 82 | 89 | 90 | 90 | 91 | 88 | 90 | 91 | 92 | | BN3[17] | A | 22 | 39 | 58 | 67 | 73 | 75 | 79 | 81 | 82 | 86 | 89 | 92 | 94 | 96 | 98 | | BN3[17] | B | 47 | 59 | 70 | 73 | 76 | 82 | 84 | 91 | 94 | 95 | 95 | 95 | 94 | 94 | 95 | | EEGNet[20] | A | 18 | 33 | 46 | 60 | 68 | 70 | 82 | 82 | 83 | 85 | 88 | 90 | 91 | 96 | 99 | | EEGNet[20] | B | 39 | 49 | 56 | 65 | 76 | 80 | 85 | 87 | 89 | 89 | 90 | 90 | 90 | 92 | 93 | | 1D-CapsNet-64[18] | A | 21 | 32 | 45 | 53 | 60 | 68 | 76 | 83 | 85 | 84 | 82 | 88 | 94 | 96 | 98 | | 1D-CapsNet-64[18] | B | 48 | 54 | 60 | 66 | 75 | 81 | 81 | 86 | 87 | 93 | 93 | 93 | 92 | 93 | 94 | | CM-CW-CNN-ESVM[19] | A | 22 | 32 | 55 | 59 | 64 | 70 | 74 | 78 | 81 | 86 | 86 | 90 | 91 | 94 | 99 | | CM-CW-CNN-ESVM[19] | B | 37 | 58 | 70 | 72 | 80 | 86 | 86 | 89 | 93 | 95 | 95 | 97 | 97 | 98 | 99 | | IncepA-EEGNet | A | 19 | 34 | 47 | 62 | 70 | 71 | 84 | 83 | 85 | 89 | 92 | 93 | 94 | 96 | 100 | | IncepA-EEGNet | B | 41 | 59 | 73 | 77 | 81 | 85 | 88 | 90 | 92 | 95 | 95 | 95 | 95 | 95 | 95 | |
|
|
|