IncepA-EEGNet: 融合Inception网络和注意力机制的P300信号检测方法
|
许萌,王丹,李致远,陈远方
|
IncepA-EEGNet: P300 signal detection method based on fusion of Inception network and attention mechanism
|
Meng XU,Dan WANG,Zhi-yuan LI,Yuan-fang CHEN
|
|
表 5 在P300信号分类上IncepA-EEGNet与其他深度学习方法的比较 |
Tab.5 Comparison of IncepA-EEGNet’s performance with other deep learning methods on P300 signal classification |
|
方法 | 受试者 | Acc | R | P | F1 | CNN-1[10] | A | 0.7037 | 0.6737 | 0.3170 | 0.4311 | CNN-1[10] | B | 0.7065 | 0.6783 | 0.4073 | 0.5090 | MCNN-1[10] | A | 0.6899 | 0.6903 | 0.3085 | 0.4260 | MCNN-1[10] | B | 0.6912 | 0.7340 | 0.3833 | 0.5034 | MCNN-3[10] | A | 0.7038 | 0.6743 | 0.3172 | 0.4314 | MCNN-3[10] | B | 0.7037 | 0.6923 | 0.4089 | 0.5141 | EEGNet[20] | A | 0.7065 | 0.6460 | 0.3147 | 0.4232 | EEGNet[20] | B | 0.7266 | 0.6950 | 0.4214 | 0.4587 | BN3[17] | A | 0.7513 | 0.6133 | 0.3607 | 0.4605 | BN3[17] | B | 0.7902 | 0.6947 | 0.4214 | 0.5246 | IncepA-EEGNet | A | 0.7553 | 0.6456 | 0.3676 | 0.4679 | IncepA-EEGNet | B | 0.7914 | 0.7250 | 0.4261 | 0.5367 |
|
|
|