IncepA-EEGNet: 融合Inception网络和注意力机制的P300信号检测方法
|
许萌,王丹,李致远,陈远方
|
IncepA-EEGNet: P300 signal detection method based on fusion of Inception network and attention mechanism
|
Meng XU,Dan WANG,Zhi-yuan LI,Yuan-fang CHEN
|
|
表 4 不同CNN网络添加子模块对分类准确率的影响 |
Tab.4 Impact of adding sub-modules to different CNN networks on classification accuracy |
|
添加模块 | Acc | 受试者 | CNN-1 | MCNN-1 | MCNN-3 | EEGNet | 基础网络(Net) | A | 0.7037 | 0.6899 | 0.7038 | 0.7065 | 基础网络(Net) | B | 0.7065 | 0.6912 | 0.7037 | 0.7266 | Net+Attention | A | 0.7092 | 0.6906 | 0.7091 | 0.7141 | Net+Attention | B | 0.7185 | 0.7154 | 0.7192 | 0.7399 | Net+Inception-v1 | A | 0.7100 | 0.6965 | 0.7103 | 0.7174 | Net+Inception-v1 | B | 0.7222 | 0.7276 | 0.7203 | 0.7476 | Net+Attention +Inception-v1 | A | 0.7186 | 0.7084 | 0.7258 | 0.7553 | Net+Attention +Inception-v1 | B | 0.7454 | 0.7384 | 0.7478 | 0.7914 |
|
|
|