基于知识增强的图卷积神经网络的文本分类
|
王婷,朱小飞,唐顾
|
Knowledge-enhanced graph convolutional neural networks for text classification
|
Ting WANG,Xiao-fei ZHU,Gu TANG
|
|
表 2 KEGCN模型在4个数据集上的分类准确性对比 |
Tab.2 Comparison of classification accuracy of KEGCN model on four datasets |
|
模型 | Acc | 20NG | OHSUMED | R52 | R8 | CNN-rand | 0.7693±0.0061 | 0.4387±0.0100 | 0.8537±0.0047 | 0.9402±0.0057 | CNN-non-static | 0.8215±0.0052 | 0.5844±0.0106 | 0.8759±0.0048 | 0.9571±0.0052 | LSTM(pretrain) | 0.7543±0.0172 | 0.5110±0.0150 | 0.9048±0.0086 | 0.9609±0.0019 | Bi-LSTM | 0.7318±0.0185 | 0.4927±0.0107 | 0.9054±0.0091 | 0.9631±0.0033 | fastText | 0.7938±0.0030 | 0.5770±0.0049 | 0.9281±0.0009 | 0.9613±0.0021 | SWEM | 0.8516±0.0029 | 0.6312±0.0055 | 0.9294±0.0024 | 0.9532±0.0026 | Text-GCN | 0.8634±0.0009 | 0.6836±0.0056 | 0.9356±0.0018 | 0.9707±0.0051 | HETE-GCN | 0.8715±0.0015 | 0.6811±0.0070 | 0.9435±0.0025 | 0.9724±0.0010 | KEGCN | 0.8822±0.0045 | 0.6971±0.0059 | 0.9451±0.0018 | 0.9741±0.0025 |
|
|
|