基于竞争注意力融合的深度三维点云分类网络
|
陈涵娟,达飞鹏,盖绍彦
|
Deep 3D point cloud classification network based on competitive attention fusion
|
Han-juan CHEN,Fei-peng DA,Shao-yan GAI
|
|
表 3 在ShapeNetPart数据集上的零件分割性能 |
Tab.3 Part segmentation performance on ShapeNetPart dataset % |
|
方法 | mIoU | IoU | areo | bag | cap | car | chair | ear phone | guitar | knife | lamp | laptop | motor | mug | pistol | rocket | skate board | table | PointNet[4] | 83.7 | 83.4 | 78.7 | 82.5 | 74.9 | 89.6 | 73.0 | 91.5 | 85.9 | 80.8 | 95.3 | 65.2 | 93.0 | 81.2 | 57.9 | 72.8 | 80.6 | SO-Net[8] | 84.9 | 82.8 | 77.8 | 88.0 | 77.3 | 90.6 | 73.5 | 90.7 | 83.9 | 82.8 | 94.8 | 69.1 | 94.2 | 80.9 | 53.1 | 72.9 | 83.0 | PointNet++[5] | 85.1 | 82.4 | 79.0 | 87.7 | 77.3 | 90.8 | 71.8 | 91.0 | 85.9 | 83.7 | 95.3 | 71.6 | 94.1 | 81.3 | 58.7 | 76.4 | 82.6 | P2Sequence[12] | 85.2 | 82.6 | 81.8 | 87.5 | 77.3 | 90.8 | 77.1 | 91.1 | 86.9 | 83.9 | 95.7 | 70.8 | 94.6 | 79.3 | 58.1 | 75.2 | 82.8 | PointCNN[10] | 86.1 | 84.1 | 86.5 | 86.0 | 80.8 | 90.6 | 79.7 | 92.3 | 88.4 | 85.3 | 96.1 | 77.2 | 95.2 | 84.2 | 64.2 | 80.0 | 83.0 | PointASNL[21] | 86.1 | 84.1 | 84.7 | 87.9 | 79.7 | 92.2 | 73.7 | 91.0 | 87.2 | 84.2 | 95.8 | 74.4 | 95.2 | 81.0 | 63.0 | 76.3 | 83.2 | 本研究 | 85.9 | 84.2 | 83.2 | 87.4 | 79.2 | 91.9 | 74.3 | 91.5 | 86.4 | 84.3 | 95.7 | 73.7 | 95.4 | 82.6 | 62.4 | 75.0 | 82.7 |
|
|
|