基于卷积神经网络的多类运动想象脑电信号识别
|
刘近贞,叶方方,熊慧
|
Recognition of multi-class motor imagery EEG signals based on convolutional neural network
|
Jin-zhen LIU,Fang-fang YE,Hui XIONG
|
|
表 4 所提方法与对比文献分类Kappa值对比 |
Tab.4 Comparison of classification Kappa value between proposed method and comparative references |
|
被试者 | Kappa值 | 所提方法 | CNN-LSTM[33] | RBM-SVM[36] | ETRCNN[37] | C2CM[38] | 3D-CNN[39] | FBCSP[40] | 1 | 0.9885 | 0.8500 | 0.8214 | 0.8420 | 0.8750 | 0.6990 | 0.6800 | 2 | 0.9933 | 0.5400 | 0.4838 | 0.6630 | 0.6528 | 0.4590 | 0.4200 | 3 | 0.9957 | 0.8700 | 0.7696 | 0.8770 | 0.9028 | 0.7880 | 0.7500 | 4 | 0.9863 | 0.7800 | 0.6664 | 0.7610 | 0.6667 | 0.5940 | 0.4800 | 5 | 0.9948 | 0.7700 | 0.5024 | 0.5710 | 0.6250 | 0.6470 | 0.4000 | 6 | 0.9848 | 0.6600 | 0.5301 | 0.8910 | 0.4549 | 0.5380 | 0.2700 | 7 | 0.9810 | 0.9500 | 0.7837 | 0.8090 | 0.8959 | 0.6530 | 0.7700 | 8 | 0.9976 | 0.8300 | 0.8655 | 0.8900 | 0.8333 | 0.7020 | 0.7600 | 9 | 0.9864 | 0.9000 | 0.8942 | 0.9070 | 0.7951 | 0.7130 | 0.6100 | 平均值 | 0.9898 | 0.7944 | 0.7019 | 0.8012 | 0.7446 | 0.6437 | 0.5711 | 均方差 | 0.0053 | 0.1197 | 0.1518 | 0.1097 | 0.1446 | 0.0942 | 0.1737 |
|
|
|