基于卷积神经网络的多类运动想象脑电信号识别
|
刘近贞,叶方方,熊慧
|
Recognition of multi-class motor imagery EEG signals based on convolutional neural network
|
Jin-zhen LIU,Fang-fang YE,Hui XIONG
|
|
表 3 所提方法与对比文献的分类准确率对比 |
Tab.3 Comparison of classification accuracy between proposed method and comparative references |
|
被试者 | A/% | 本研究方法 | DFFN[30] | HC-CNN[31] | PSO-CNN[32] | CNN-LSTM[33] | SS-MEMDBF[35] | RBM-SVM[36] | ETRCNN[37] | 1 | 99.14 | 85.40 | 90.07 | 93.30 | 98.82 | 91.49 | 86.61 | 85.88 | 2 | 99.49 | 69.30 | 80.28 | 84.59 | 98.64 | 60.56 | 61.26 | 75.41 | 3 | 99.68 | 90.29 | 97.08 | 91.68 | 96.92 | 94.16 | 87.27 | 91.32 | 4 | 99.01 | 71.07 | 89.66 | 84.55 | 96.50 | 76.72 | 75.20 | 83.45 | 5 | 99.61 | 65.41 | 97.04 | 86.54 | 92.75 | 58.52 | 64.55 | 72.11 | 6 | 98.86 | 69.45 | 87.04 | 76.92 | 91.84 | 68.52 | 65.91 | 91.72 | 7 | 98.58 | 88.18 | 92.14 | 94.03 | 95.07 | 78.67 | 83.78 | 85.71 | 8 | 99.82 | 86.46 | 98.51 | 93.20 | 95.25 | 97.01 | 89.91 | 91.32 | 9 | 98.98 | 93.54 | 92.31 | 92.24 | 99.23 | 93.85 | 92.08 | 93.23 | 平均值 | 99.24 | 79.90 | 91.57 | 85.56 | 96.13 | 79.94 | 78.51 | 85.57 | 均方差 | 0.3998 | 10.25 | 5.41 | 5.46 | 2.486 | 14.13 | 11.29 | 7.08 |
|
|
|