基于3D scSE-UNet的肝脏CT图像半监督学习分割方法
|
刘清清,周志勇,范国华,钱旭升,胡冀苏,陈光强,戴亚康
|
Semi-supervised learning segmentation method of liver CT images based on 3D scSE-UNet
|
Qing-qing LIU,Zhi-yong ZHOU,Guo-hua FAN,Xu-sheng QIAN,Ji-su HU,Guang-qiang CHEN,Ya-kang DAI
|
|
表 2 不同标签数量占比下的分割性能比较 |
Tab.2 Comparison of segmentation performance under different proportion of labels |
|
方法 | L | U | LP/% | DSC | SEN | PPV | VOE/% | RVD/% | ASD/mm | RMSD/mm | MSD/mm | 全监督3D UNet | 100 | − | − | 0.937±0.034 | 0.958±0.021 | 0.920±0.059 | 5.613±6.744 | 6.034±7.788 | 4.168±5.688 | 10.133±13.870 | 88.078±61.122 | 全监督3D scSE-UNet | 100 | − | − | 0.950±0.032 | 0.964±0.047 | 0.938±0.041 | 4.532±6.572 | 4.689±6.443 | 1.974±2.032 | 4.257±4.660 | 38.767±22.557 | 半监督3D scSE-UNet | 50 | 50 | 50 | 0.948±0.023 | 0.960±0.024 | 0.937±0.041 | 4.162±4.696 | 4.262±5.078 | 2.037±1.123 | 4.227±2.571 | 37.608±16.748 | 40 | 60 | 40 | 0.946±0.025 | 0.959±0.026 | 0.934±0.048 | 5.079±5.358 | 4.970±6.004 | 2.143±1.213 | 4.295±2.801 | 36.659±16.682 | 30 | 70 | 30 | 0.941±0.032 | 0.959±0.047 | 0.925±0.045 | 5.130±6.832 | 5.176±6.853 | 2.431±1.702 | 5.014±3.798 | 40.554±19.559 | 20 | 80 | 20 | 0.930±0.040 | 0.945±0.048 | 0.919±0.060 | 6.326±8.065 | 6.598±8.684 | 2.972±2.176 | 5.758±4.541 | 43.552±21.964 | 10 | 90 | 10 | 0.902±0.049 | 0.943±0.052 | 0.874±0.078 | 11.337±10.201 | 12.419±12.079 | 4.403±2.736 | 8.000±4.958 | 49.131±21.866 |
|
|
|