基于ShuffleNetv2-YOLOv3模型的静态手势实时识别方法
|
|
辛文斌,郝惠敏,卜明龙,兰媛,黄家海,熊晓燕
|
Static gesture real-time recognition method based on ShuffleNetv2-YOLOv3 model
|
|
Wen-bin XIN,Hui-min HAO,Ming-long BU,Yuan LAN,Jia-hai HUANG,Xiao-yan XIONG
|
|
| 表 8 不同主干网络的测试结果 |
| Tab.8 Test results of different backbone networks |
|
| 网络模型 | 主干网络 | mAP | TT/h | Ws /MB | v /(帧·s−1) | | YOLOv2 | Darknet-19 | 0.930 | 3.105 | 202.4 | 47 | | YOLOv3-Tiny | Tiny | 0.974 | 1.256 | 34.8 | 46 | | YOLOv3 | ResNet-50 | 0.984 | 2.821 | 161.2 | 40 | | YOLOv3 | Darknet-53 | 0.990 | 4.104 | 246.6 | 41 | | YOLOv3 | MobileNetv2 | 0.955 | 2.051 | 28.0 | 37 | | SSD | MobileNetv2 | 0.882 | 4.390 | 24.1 | 19 | | YOLOv3 | ShuffleNetv2-1.0× | 0.992 | 1.594 | 15.1 | 44 |
|
|
|