基于相关向量机和模糊综合评价的路况预测模型
|
林浩,李雷孝,王慧,马志强,万剑雄
|
Model based on relevance vector machine and fuzzy comprehensive evaluation for road condition prediction
|
Hao LIN,Lei-xiao LI,Hui WANG,Zhi-qiang MA,Jian-xiong WAN
|
|
表 4 不同算法模型预测车流量的对比 |
Tab.4 Comparison of traffic flow predicted by different algorithms and models |
|
算法模型 | 数据集1 | | 数据集2 | | 数据集3 | MSE | RMSE | MAPE | MSE | RMSE | MAPE | MSE | RMSE | MAPE | PSO-SVM | 564.06 | 23.75 | 0.1624 | | 251.54 | 15.86 | 0.1724 | | 48.86 | 6.99 | 0.2701 | LSTM | 493.13 | 22.21 | 0.1435 | 234.37 | 15.31 | 0.1689 | 82.88 | 9.10 | 0.2702 | GRU | 495.68 | 22.26 | 0.1432 | 233.978 | 15.29 | 0.1676 | 83.10 | 9.12 | 0.2733 | CNN-LSTM | 483.18 | 21.92 | 0.1438 | 235.89 | 15.36 | 0.1663 | 82.43 | 9.08 | 0.2659 | CNN-GRU[26] | 487.46 | 22.07 | 0.1429 | 229.62 | 15.15 | 0.1648 | 82.44 | 9.08 | 0.2640 | Bi-LSTM[27] | 481.34 | 21.94 | 0.1545 | 223.13 | 14.94 | 0.1811 | 81.58 | 9.03 | 0.2703 | GA-CKRVM[28] | 433.53 | 20.82 | 0.1412 | 161.56 | 12.71 | 0.1616 | 62.24 | 7.76 | 0.2347 | CNN-Bi-LSTM | 477.35 | 21.84 | 0.1396 | 227.11 | 15.07 | 0.1622 | 81.79 | 9.04 | 0.2578 | SPGAPSO-CKRVM | 392.43 | 19.81 | 0.1383 | 161.1 | 12.69 | 0.1589 | 41.09 | 6.41 | 0.2232 |
|
|
|