基于动态贝叶斯网络的变幅载荷下疲劳裂纹扩展预测方法
王泓晖,房鑫,李德江,刘贵杰

Fatigue crack growth prediction method under variable amplitude load based on dynamic Bayesian network
Hong-hui WANG,Xin FANG,De-jiang LI,Gui-jie LIU
表 3 AlMgSi1-T6铝合金的物理性能
Tab.3 Physical properties of AlMgSi1-T6 aluminum alloy
${\sigma _{\rm{u}}}$/MPa ${\sigma _{\rm{Y}}}$/MPa n ${K_{{\rm{IC}}}}$/MPa $\Delta {K_{{\rm{th}}}}$/ $({\rm{MPa} }\cdot\sqrt{\rm{ m} })$
$300.0 \pm 2.5$ $245.0 \pm 2.7$ 0.064 32 2.184−1.007R[33]