基于多层BiLSTM和改进粒子群算法的应用负载预测方法
蔡亮,周泓岑,白恒,才振功,尹可挺,贝毅君

Application load forecasting method based on multi-layer bidirectional LSTM and improved PSO algorithm
Liang CAI,Hong-cen ZHOU,Heng BAI,Zhen-gong CAI,Ke-ting YIN,Yi-jun BEI
表 1 负载预测中各种模型的预测误差
Tab.1 Load prediction errors comparison
模型 RMSE MAE MAPE/% Q
Pa-BiLSTM 121.05 78.67 3.97 0.37
PSO-BiLSTM 157.13 92.53 4.63 0.45
BiLSTM 176.25 105.24 5.65 0.49
Pa-LSTM 158.39 102.84 5.38 0.46
LSTM 267.40 155.03 7.64 0.65
ARIMA(1,1,1) 366.84 167.46 5.87 0.73
HoltWinters 196.13 162.49 8.21 0.58
Prophet 234.92 198.94 11.18 0.67
基准模型 452.22 347.03 29.62 1.00