基于多层BiLSTM和改进粒子群算法的应用负载预测方法
|
蔡亮,周泓岑,白恒,才振功,尹可挺,贝毅君
|
Application load forecasting method based on multi-layer bidirectional LSTM and improved PSO algorithm
|
Liang CAI,Hong-cen ZHOU,Heng BAI,Zhen-gong CAI,Ke-ting YIN,Yi-jun BEI
|
|
表 1 负载预测中各种模型的预测误差 |
Tab.1 Load prediction errors comparison |
|
模型 | RMSE | MAE | MAPE/% | Q | Pa-BiLSTM | 121.05 | 78.67 | 3.97 | 0.37 | PSO-BiLSTM | 157.13 | 92.53 | 4.63 | 0.45 | BiLSTM | 176.25 | 105.24 | 5.65 | 0.49 | Pa-LSTM | 158.39 | 102.84 | 5.38 | 0.46 | LSTM | 267.40 | 155.03 | 7.64 | 0.65 | ARIMA(1,1,1) | 366.84 | 167.46 | 5.87 | 0.73 | HoltWinters | 196.13 | 162.49 | 8.21 | 0.58 | Prophet | 234.92 | 198.94 | 11.18 | 0.67 | 基准模型 | 452.22 | 347.03 | 29.62 | 1.00 |
|
|
|