动态背景下基于自更新像素共现的前景分割
|
梁栋,刘昕宇,潘家兴,孙涵,周文俊,金子俊一
|
Foreground segmentation under dynamic background based on self-updating co-occurrence pixel
|
Dong LIANG,Xin-yu LIU,Jia-xing PAN,Han SUN,Wen-jun ZHOU,Shun’ichi KANEKO
|
|
表 2 不同方法的CDNet2014数据集F-measure对比 |
Tab.2 F-measure of different methods on CDNet2014 |
|
序号 | 算法 | F-measure | BDW | BSL | CJT | DBG | IOM | SHD | THM | TBL | LFR | NVD | PTZ | 1 | SU-CPB | 0.867 | 0.907 | 0.853 | 0.924 | 0.760 | 0.910 | 0.969 | 0.895 | 0.449 | 0.558 | 0.753 | 2 | CPB[17] | 0.475 | 0.519 | 0.597 | 0.477 | 0.348 | 0.581 | 0.372 | 0.459 | 0.170 | 0.277 | 0.161 | 3 | SuBSENSE[6] | 0.862 | 0.950 | 0.815 | 0.818 | 0.657 | 0.865 | 0.817 | 0.779 | 0.645 | 0.560 | 0.348 | 4 | KDE[3] | 0.757 | 0.909 | 0.572 | 0.596 | 0.409 | 0.803 | 0.742 | 0.448 | 0.548 | 0.437 | 0.037 | 5 | GMM[2] | 0.738 | 0.825 | 0.597 | 0.633 | 0.521 | 0.732 | 0.662 | 0.466 | 0.537 | 0.410 | 0.152 | 6 | BMOG[8] | 0.784 | 0.830 | 0.749 | 0.793 | 0.529 | 0.840 | 0.635 | 0.693 | 0.610 | 0.498 | 0.235 | 7 | SGSM-BS[11] | 0.856 | 0.950 | 0.820 | 0.848 | 0.819 | 0.890 | 0.850 | 0.850 | 0.750 | 0.510 | − | 8 | STAM[22] | 0.970 | 0.989 | 0.899 | 0.948 | 0.916 | 0.966 | 0.991 | 0.933 | 0.668 | 0.710 | 0.865 | 9 | DeepBS[9] | 0.830 | 0.958 | 0.899 | 0.876 | 0.610 | 0.930 | 0.758 | 0.846 | 0.600 | 0.584 | 0.313 | 10 | CascadeCNN[12] | 0.943 | 0.979 | 0.976 | 0.966 | 0.851 | 0.941 | 0.896 | 0.911 | 0.837 | 0.897 | 0.917 | 11 | DPDL[13] | 0.869 | 0.969 | 0.866 | 0.869 | 0.876 | 0.936 | 0.838 | 0.764 | 0.708 | 0.611 | 0.609 | 12 | FgSegNet[14] | 0.984 | 0.998 | 0.995 | 0.994 | 0.993 | 0.995 | 0.992 | 0.978 | 0.956 | 0.978 | 0.989 |
|
|
|