基于过渡帧概念训练的微表情检测深度网络
付晓峰,牛力,胡卓群,李建军,吴卿

Deep micro-expression spotting network training based on concept of transition frame
Xiao-feng FU,Li NIU,Zhuo-qun HU,Jian-jun LI,Qing WU
表 4 CASME II数据库上MesNet与已有方法的性能对比
Tab.4 Performance comparison among MesNet and existing methods on CASME II
方法 Precision Recall F-Measure Accuracy AUC
3D HOG – XT[29] 0.534 1 0.623 5 0.575 4 0.735 5 0.726 1
Frame differences[14] 0.817 5
HOOF[30] 0.649 9
LBP[30] 0.929 8
CFD[28] 0.941 9
MesNet 0.939 6 0.947 8 0.943 7 0.914 6 0.955 6