基于过渡帧概念训练的微表情检测深度网络
|
付晓峰,牛力,胡卓群,李建军,吴卿
|
Deep micro-expression spotting network training based on concept of transition frame
|
Xiao-feng FU,Li NIU,Zhuo-qun HU,Jian-jun LI,Qing WU
|
|
表 1 CASME II数据库上各种版本MesNet网络训练细节及AUC |
Tab.1 Training details and AUC values of various MesNet models on CASME II |
|
模型 | 图片输入尺寸 | 训练迭代次数 | 模型大小/MB | L | AUC | MesNet-VGG-19 | 224×224×3 | 767 | 1 096 | 0.029 0 | 0.837 7 | MesNet-Inception V3 | 299×299×3 | 1 239 | 115 | 0.028 9 | 0.920 0 | MesNet-Inception V4 | 299×299×3 | 1 558 | 184 | 0.000 1 | 0.887 6 | MesNet-Res V2-50 | 224×224×3 | 124 | 109 | 0.008 5 | 0.787 1 | MesNet-Res V2-101 | 224×224×3 | 319 | 182 | 0.001 5 | 0.844 8 | MesNet-Res V2-152 | 224×224×3 | 231 | 242 | 0.006 9 | 0.844 8 | MesNet-Inception-Res-V2 | 299×299×3 | 5 362 | 235 | 0.011 5 | 0.952 6 |
|
|
|