基于模式识别和集成CNN-LSTM的阵发性房颤预测模型
|
杨萍,王丹,康子健,李童,付利华,余悦任
|
Prediction model of paroxysmal atrial fibrillation based on pattern recognition and ensemble CNN-LSTM
|
Ping YANG,Dan WANG,Zi-jian KAGN,Tong LI,Li-hua FU,Yue-ren YU
|
|
表 5 模型在跨患者模式下的实验结果 |
Tab.5 Experimental results of models under inter-patient paradigm |
|
文献 | 训练集 | 测试集 | ACC/% | SEN/% | SPE/% | Thong等[28] | − | − | 76.0 | 68.0 | 86.0 | Zong等[29] | − | − | 80.0 | − | − | 本研究方法 | P06~P25,n11~n50 | P01~p05,n01~n10 | 86.9 | 82.4 | 90.0 | P01~P05,P11~P25,n01~n10,n21~n50 | P06~P10,n11~n20 | 70.6 | 60.0 | 73.1 | P01~p10,p16~p25,n01~n20,n31~n50 | P11~p15,n31~n30 | 77.9 | 76.9 | 78.2 | P01~p15,P21~p25,n01~n30,n41~n50 | P16~p20,n31~n40 | 89.9 | 89.7 | 89.9 | P01~p20,n01~n40 | P21~p25,n41~n50 | 78.5 | 67.2 | 83.1 | | 平均值 | | 80.6 | 75.7 | 82.7 |
|
|
|