基于模式识别和集成CNN-LSTM的阵发性房颤预测模型
杨萍,王丹,康子健,李童,付利华,余悦任

Prediction model of paroxysmal atrial fibrillation based on pattern recognition and ensemble CNN-LSTM
Ping YANG,Dan WANG,Zi-jian KAGN,Tong LI,Li-hua FU,Yue-ren YU
表 4 模型与相关工作在训练集和测试集随机划分模式下的比较
Tab.4 Comparison between proposed model and related studies under random partition mode of training and testing sets
文献 特征提取方法 t/min f/Hz ACC/% SEN/% SPE/%
Boon等[4] HRV特征,GA 15 128 79.3 77.4 81.1
10 128 68.8 58.5 81.1
Narin等[5] HRV线性和非线性特征组合,GA 5 128 90.0 92.0 88.0
Sutton等[24] PSPR,模板匹配 1 8 82.1 100.0 73.6
Boon等[26] HRV特征,GAⅢ 5 128 87.7 86.8 88.7
Costin等[27] HRV特征, QRS复合波形态变异性 30 128 89.4 89.3 89.4
本研究方法 PSPR+CNN-LSTM+集成学习 1 8 91.3 82.2 95.8