基于模式识别和集成CNN-LSTM的阵发性房颤预测模型
杨萍,王丹,康子健,李童,付利华,余悦任

Prediction model of paroxysmal atrial fibrillation based on pattern recognition and ensemble CNN-LSTM
Ping YANG,Dan WANG,Zi-jian KAGN,Tong LI,Li-hua FU,Yue-ren YU
表 2 不同模式匹配长度对应的稠密指数
Tab.2 Density index values corresponding to different symbol matching lengths
p n t DIp
1 4.90 5 0.980 0
2 18.90 25 0.750 0
3 51.30 125 0.410 0
4 98.69 625 0.160 0
5 171.25 3 125 0.050 0
6 270.31 15 625 0.020 0
7 398.43 78 125 0.010 0
8 546.88 390 625 0.001 0
9 585.94 1 953 125 0.000 3
10 828.13 9 765 625 <0.000 1