基于模式识别和集成CNN-LSTM的阵发性房颤预测模型
杨萍,王丹,康子健,李童,付利华,余悦任

Prediction model of paroxysmal atrial fibrillation based on pattern recognition and ensemble CNN-LSTM
Ping YANG,Dan WANG,Zi-jian KAGN,Tong LI,Li-hua FU,Yue-ren YU
表 1 模式匹配长度为2时,序列S的模式转移频次和转移概率
Tab.1 Pattern transition frequencies and probabilities with pattern matching length of sequence of 2
模式 PTF2 PTP2
a b c 总计 a b c
aa 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ab 0.0 0.0 1.0 1.0 0.0 0.0 1.0
ac 0.0 1.0 1.0 2.0 0.0 0.5 0.5
ba 0.0 0.0 2.0 2.0 0.0 0.0 1.0
bb 0.0 0.0 0.0 0.0 0.0 0.0 0.0
bc 0.0 0.0 1.0 1.0 0.0 0.0 1.0
ca 0.0 0.0 0.0 0.0 0.0 0.0 0.0
cb 2.0 0.0 0.0 2.0 1.0 0.0 0.0
cc 0.0 1.0 0.0 1.0 0.0 1.0 0.0