基于Chebyshev-Ritz法分析多裂纹梁自振特性
|
赵佳雷,周叮,张建东,胡朝斌
|
Free vibration characteristics of multi-cracked beam based on Chebyshev-Ritz method
|
Jia-lei ZHAO,Ding ZHOU,Jian-dong ZHANG,Chao-bin HU
|
|
表 4 悬臂梁计算结果与有限元分析的对比(h/L=0.1,d1/L=0.5,d2/L=0.8) |
Tab.4 Comparison of results of cantilevered beam with those from FEA(h/L=0.1,d1/L=0.5,d2/L=0.8) |
|
参数 | 方法 | Ω1 | Ω2 | Ω3 | Ω4 | Ω5 | Ω6 | Ω7 | Ω8 | c1/h=0.2,c2/h=0.1 | 本文方法 | 0.031 6 | 0.185 2 | 0.493 4 | 0.501 0 | 0.886 0 | 1.386 9 | 1.476 7 | 1.881 9 | c1/h=0.2,c2/h=0.1 | 有限元法 | 0.031 6 | 0.184 2 | 0.492 7 | 0.500 7 | 0.881 6 | 1.385 8 | 1.474 4 | 1.876 0 | c1/h=0.3,c2/h=0.2 | 本文方法 | 0.031 3 | 0.177 0 | 0.485 2 | 0.493 4 | 0.839 7 | 1.359 1 | 1.449 0 | 1.840 2 | c1/h=0.3,c2/h=0.2 | 有限元法 | 0.031 2 | 0.175 4 | 0.483 9 | 0.492 6 | 0.833 3 | 1.356 5 | 1.444 8 | 1.834 0 | c1/h=0.4,c2/h=0.2 | 本文方法 | 0.030 7 | 0.166 8 | 0.475 9 | 0.491 9 | 0.812 4 | 1.355 6 | 1.420 3 | 1.809 4 | c1/h=0.4,c2/h=0.2 | 有限元法 | 0.030 6 | 0.164 7 | 0.473 8 | 0.491 1 | 0.806 2 | 1.352 4 | 1.414 8 | 1.804 3 |
|
|
|