基于Chebyshev-Ritz法分析多裂纹梁自振特性
|
赵佳雷,周叮,张建东,胡朝斌
|
Free vibration characteristics of multi-cracked beam based on Chebyshev-Ritz method
|
Jia-lei ZHAO,Ding ZHOU,Jian-dong ZHANG,Chao-bin HU
|
|
表 2 固支梁计算结果与有限元分析的对比(h/L=0.1,d1/L=0.5,d2/L=0.8) |
Tab.2 Comparison of results of fixed beam with those from FEA(h/L=0.1,d1/L=0.5,d2/L=0.8) |
|
参数 | 方法 | Ω1 | Ω2 | Ω3 | Ω4 | Ω5 | Ω6 | Ω7 | Ω8 | c1/h=0.2,c2/h=0.1 | 本文方法 | 0.188 1 | 0.491 9 | 0.866 2 | 0.993 5 | 1.353 7 | 1.825 4 | 1.968 2 | 2.407 0 | c1/h=0.2,c2/h=0.1 | 有限元法 | 0.187 5 | 0.491 8 | 0.862 2 | 0.993 2 | 1.353 2 | 1.817 9 | 1.965 8 | 2.406 6 | c1/h=0.3,c2/h=0.2 | 本文方法 | 0.183 1 | 0.488 0 | 0.826 7 | 0.986 6 | 1.340 7 | 1.766 8 | 1.948 1 | 2.396 6 | c1/h=0.3,c2/h=0.2 | 有限元法 | 0.182 1 | 0.487 7 | 0.820 9 | 0.986 1 | 1.339 6 | 1.755 8 | 1.945 8 | 2.395 1 | c1/h=0.4,c2/h=0.2 | 本文方法 | 0.176 9 | 0.487 6 | 0.797 4 | 0.986 3 | 1.338 1 | 1.693 4 | 1.932 7 | 2.389 9 | c1/h=0.4,c2/h=0.2 | 有限元法 | 0.175 7 | 0.487 3 | 0.791 1 | 0.985 9 | 1.336 5 | 1.680 7 | 1.930 7 | 2.387 2 |
|
|
|