目标检测强化上下文模型
|
郑晨斌,张勇,胡杭,吴颖睿,黄广靖
|
Object detection enhanced context model
|
Chen-bin ZHENG,Yong ZHANG,Hang HU,Ying-rui WU,Guang-jing HUANG
|
|
表 5 各目标检测器在VOC2007测试集上的检测结果 |
Tab.5 Detection results of each object detector on VOC2007 test set |
|
方法 | 骨干网络 | 框架 | GPU | 锚框数目 | 输入大小 | v/(帧·s−1) | $\varPhi $/% | 注:1)网络模型的官方版本使用Caffe实现,且硬件和环境配置与本文不同,为了公平比较检测速度,使用PyTorch重新实现SSD和FSSD模型,并在相同环境下进行测试;2)网络模型的硬件和环境配置也与本文不同,同样在相同环境下进行测试. | Faster R-CNN[19] | VGG16 | Caffe | K40 | 300 | ~1 000×600 | 5.0 | 73.17 | ION[20] | VGG16 | Caffe | Titan X | 3 000 | ~1 000×600 | 1.3 | 75.55 | R-FCN[21] | ResNet-101 | Caffe | K40 | 300 | ~1 000×600 | 5.9 | 79.51 | CoupleNet[22] | ResNet-101 | Caffe | Titan X | 300 | ~1 000×600 | 9.8 | 81.70 | YOLOv2[14] | Darknet-19 | darknet | Titan X | − | 352×352 | 81.0 | 73.70 | YOLOv2[14] | Darknet-19 | darknet | Titan X | − | 544×544 | 40.0 | 78.60 | ${\rm{SSD}}{300^{\rm{*}}}$[12] | VGG16 | Caffe | Titan X | 8 732 | 300×300 | 46.0 | 77.51 | ${\rm{SSD}}{300^{1)}}$ | VGG16 | PyTorch | 1080Ti | 8 732 | 300×300 | 95.3 | 77.51 | DSOD300[23] | DS/64-192-48-1 | Caffe | Titan X | 8 732 | 300×300 | 17.4 | 77.66 | DSSD321[12] | ResNet-101 | Caffe | Titan X | 17 080 | 321×321 | 9.5 | 78.63 | R-SSD300[5] | VGG16 | Caffe | Titan X | 8 732 | 300×300 | 35.0 | 78.50 | FSSD300[6] | VGG16 | Caffe | 1080Ti | 11 570 | 300×300 | 65.8 | 78.77 | ${\rm{FSSD}}300$ 1) | VGG16 | PyTorch | 1080Ti | 11 570 | 300×300 | 85.7 | 78.77 | RefineDet320[24] | VGG16 | Caffe | Titan X | 6 375 | 320×320 | 40.3 | 79.97 | RFB Net300[1] | VGG16 | PyTorch | Titan X | 11 620 | 300×300 | 83.0 | 80.50 | ${\rm{RFB}}\,{\rm{Net30}}{\rm{0}}$ 2) | VGG16 | PyTorch | 1080Ti | 11 620 | 300×300 | 70.0 | 80.42 | ECMNet300 | VGG16 | PyTorch | 1080Ti | 11 620 | 300×300 | 73.5 | 80.52 |
|
|
|