融合用户信任和影响力的top-N推荐算法
|
张雪峰,陈秀莉,僧德文
|
Top-N recommendation algorithm combining user trust and influence
|
Xue-feng ZHANG,Xiu-li CHEN,De-wen SENG
|
|
表 3 Top-N项目推荐对比实验结果 |
Tab.3 Top-N item recommendation comparison experiment results |
|
数据集 | 方法 | N=5 | | N=10 | $P@N$ | $F1@N$ | ${\rm{NDCG}}@N$ | $P@N$ | $F1@N$ | ${\rm{NDCG}}@N$ | Epinions | MostPop | 0.011 690 | 0.012 98 | 0.012 334 | | 0.009 171 | 0.013 05 | 0.016 238 | GBPR | 0.009 353 | 0.011 03 | 0.012 296 | | 0.007 560 | 0.011 11 | 0.016 095 | FISM | 0.011 470 | 0.013 07 | 0.012 808 | | 0.009 020 | 0.013 15 | 0.016 361 | FST | 0.011 790 | 0.013 30 | 0.013 988 | | 0.009 187 | 0.013 28 | 0.016 930 | FSTID- | 0.012 310 | 0.014 02 | 0.014 355 | | 0.010 240 | 0.014 59 | 0.017 588 | FSTID | 0.012 430 | 0.014 15 | 0.014 470 | | 0.010 480 | 0.014 76 | 0.017 832 | Ciao | MostPop | 0.026 770 | 0.024 36 | 0.025 906 | | 0.021 420 | 0.026 62 | 0.033 443 | GBPR | 0.022 280 | 0.020 63 | 0.022 319 | | 0.018 270 | 0.021 16 | 0.028 759 | FISM | 0.027 040 | 0.024 95 | 0.026 185 | | 0.021 410 | 0.026 87 | 0.032 510 | FST | 0.027 410 | 0.025 23 | 0.027 240 | | 0.021 740 | 0.027 20 | 0.034 910 | FSTID- | 0.028 300 | 0.026 44 | 0.027 389 | | 0.023 290 | 0.029 14 | 0.035 503 | FSTID | 0.029 240 | 0.026 82 | 0.027 634 | | 0.023 610 | 0.029 50 | 0.035 932 | FilmTrust | MostPop | 0.417 000 | 0.409 50 | 0.409 529 | | 0.350 300 | 0.451 80 | 0.538 924 | GBPR | 0.412 400 | 0.405 10 | 0.372 923 | | 0.347 000 | 0.445 80 | 0.500 997 | FISM | 0.417 100 | 0.408 70 | 0.413 404 | | 0.350 300 | 0.451 60 | 0.540 511 | FST | 0.419 100 | 0.409 90 | 0.419 351 | | 0.351 400 | 0.452 10 | 0.545 109 | FSTID- | 0.419 800 | 0.411 60 | 0.426 273 | | 0.353 200 | 0.454 10 | 0.547 688 | FSTID | 0.420 500 | 0.412 40 | 0.427 569 | | 0.353 300 | 0.454 80 | 0.551 260 |
|
|
|