分离 | ${\bm{C}}{\left( t \right)_{i, i + 1}} = {\bm{C}}\left( t \right)_{_{i, i + 1}}^{\rm{f}} = \left[ {0, 1, 1, 0, 1, 1} \right]$ | ${\bm{B}}_{^{k + 1}}^{\rm{f}} = {\left[ {\begin{array}{*{20}{l}} 0&{{{\bm{C}}_{1, 2}}}&0&{...}&{}&0 \\ {{{\bm{C}}_{2, 1}}}&{}&{...}&{}&{}&0 \\ 0&{...}&{}&{{{\bm{C}}_{i, i + 1}}}&{}&{...} \\ {...}&{}&{{{\bm{C}}_{i + 1, i}}}&{...}&{...}&{} \\ {}&{}&{}&{...}&{}&{{{\bm{C}}_{k, k + 1}}} \\ 0&0&{...}&{}&{{{\bm{C}}_{k + 1, k}}}&0 \end{array}} \right]_{(k + 1) \times (k + 1)}}$ | − |
滑摩 | ${\bm{C}}{\left( t \right)_{i, i + 1}} = {\bm{C}}\left( t \right)_{_{i, i + 1}}^{\rm{h}} = \left[ {1, 1, 1, \bar w, 1, 1} \right]$ | ${\bm{B}}_{^{k + 1}}^{\rm{h}} = {\left[ {\begin{array}{*{20}{l}} 0&{{{\bm{C}}_{1, 2}}}&0&{...}&{}&0 \\ {{{\bm{C}}_{2, 1}}}&{}&{...}&{}&{}&0 \\ 0&{...}&{}&{{{\bm{C}}_{i, i + 1}}}&{}&{...} \\ {...}&{}&{{{\bm{C}}_{i + 1, i}}}&{...}&{...}&{} \\ {}&{}&{}&{...}&{}&{{{\bm{C}}_{k, k + 1}}} \\ 0&0&{...}&{}&{{{\bm{C}}_{k + 1, k}}}&0 \end{array}} \right]_{(k + 1) \times (k + 1)}}$ | − |
同步 | ${\bm{C}}{\left( t \right)_{i, i + 1}} = {\bm{C}}\left( t \right)_{_{i, i + 1}}^{\rm{t}} = \left[ {1, 1, 1, 1, 1, 1} \right]$ | ${\bm{B}}_{^2}^{\rm{t}} = \left[ {\begin{array}{*{20}{l}} 0&{{{\bm{C}}_{3t}}} \\ {{{\bm{C}}_{3t}}}&0 \end{array}} \right]$ | − |
分离→ 滑摩 | ${\bm{C}}\left( t \right)_{_{i, i + 1}}^{\rm{f}} \to {\bm{C}}\left( t \right)_{_{i, i + 1}}^{\rm{h}}$ | ${\bm{B}}_{^{k + 1}}^{\rm{h}} = \left( {\prod\limits_{m = 0}^{k - 1} {{\bm{M}}_m^{{\rm{f}} \to {\rm{h}}}} } \right){\bm{B}}_{^{k + 1}}^{\rm{f}}{\left( {\prod\limits_{m = 0}^{k - 1} {{\bm{M}}_m^{{\rm{f}} \to {\rm{h}}}} } \right)^{\rm{T}}}$ | ${\bm{M}}_{_m}^{{\rm{f}} \to {\rm{h}}} = {\left[ {\begin{array}{*{20}{l}} 1&{}&{}&{\bf 0}&{}&{} \\ {}&{...}&{}&{}&{}&{} \\ {}&{}&{\alpha _{m + 1}^{{\rm{f}} \to {\rm{h}}}}&{}&{}&{} \\ {}&{}&{}&1&{}&{} \\ {}&{\bf 0}&{}&{}&{...}&{} \\ {}&{}&{}&{}&{}&1 \end{array}} \right]_{\left( {k + 1} \right) \times \left( {k + 1} \right)}}$ $\alpha _{m + 1}^{{\rm{f}} \to {\rm{h}}} = \left\{ {\begin{array}{*{20}{l}} 1, &i \ne m + 1;\\ {\bm{C}}\left( t \right)_{_{i, i + 1}}^{\rm{f}} \times {{\bm{A}}^{{\rm{f}} \to {\rm{h}}}}, & i = m + 1.\\ \end{array}} \right. $ |
滑摩→ 同步 | ${\bm{C}}\left( t \right)_{_{i, i + 1}}^{\rm{h}} \to {\bm{C}}\left( t \right)_{_{i, i + 1}}^{\rm{t}}$ | ${\bm{B}}_{^2}^{\rm{t}} = \left[ {\begin{array}{*{20}{l}} 0&{{C_{3t}}} \\ {{C_{3t}}}&0 \end{array}} \right] = \left( {\prod\limits_{m = 0}^{k - 1} {{\bm{M}}_{_m}^{{\rm{h}} \to {\rm{t}}}} } \right){\bm{B}}_{^{k + 1}}^{\rm{h}}{\left( {\prod\limits_{m = 0}^{k - 1} {{\bm{M}}_{_m}^{{\rm{h}} \to {\rm{t}}}} } \right)^{\rm{T}}}$ | ${\bm{M}}_{_m}^{{\rm{h}} \to {\rm{t}}} = {\left[ {\begin{array}{*{20}{l}} 1&{}&{}&{}&{}&{\bf 0}&{} \\ {}&{...}&{}&{}&{}&{}&{} \\ {}&{}&0&{\alpha _{m + 1}^{{\rm{h}} \to {\rm{t}}}}&{}&{}&{} \\ {}&{}&{}&0&1&{}&{} \\ {}&{\bf 0}&{}&{}&{}&{...}&{} \\ {}&{}&{}&{}&{}&{}&1 \end{array}} \right]_{k \times \left( {k + 1} \right)}}$ $\alpha _{m + 1}^{{\rm{h}} \to {\rm{t}}} = \left\{ {\begin{array}{*{20}{l}} 1, & i \ne m + 1;\\ {\bm{C}}\left( t \right)_{_{i, i + 1}}^{\rm{h}} \times {{\bm{A}}^{{\rm{h}} \to {\rm{t}}}}, & i = m + 1.\\ \end{array}} \right.$ |
同步→ 滑摩 | ${\bm{C}}\left( t \right)_{_{i, i + 1}}^{\rm{t}} \to {\bm{C}}\left( t \right)_{_{i, i + 1}}^{\rm{h}}$ | ${\bm{B}}_{^{m + 2}}^{\rm{h}} = ({\bm{M}}_{_m}^{{\rm{t}} \to {\rm{h}}}){\bm{B}}_{^{m + 1}}^{\rm{t}}{({\bm{M}}_{_m}^{{\rm{t}} \to {\rm{h}}})^{\rm{T}}}$ | $\begin{array}{l}{\bm{M}}_{_m}^{{\rm{t}} \to {\rm{h}}} = {\left[ {\begin{array}{*{20}{l}}1&{}&{\bf 0}\\{}& \ddots &{}\\{\bf 0}&{}&1\\{}&{\alpha _{m + 2}^{{\rm{t}} \to {\rm{h}}}}&0\end{array}} \right]_{\left( {m + 2} \right) \times \left( {m + 1} \right)}}\\\begin{array}{*{20}{c}}{\alpha _{m + 2}^{{\rm{t}} \to {\rm{h}}} = \left\{ \begin{array}{l}1,\\{\bm{C}}\left( t \right)_{_{i,i + 1}}^{\rm{t}} \times {{\bm{A}}^{{\rm{t}} \to {\rm{h}}}},\end{array} \right.}&\begin{array}{l}i \ne m + 1;\\i = m + 1.\end{array}\end{array}\end{array}$ |
滑摩→ 分离 | ${\bm{C}}\left( t \right)_{_{i, i + 1}}^{\rm{h}} \to {\bm{C}}\left( t \right)_{_{i, i + 1}}^{\rm{f}}$ | ${\bm{B}}_{^{k + 1}}^{\rm{f}} = \left( {\prod\limits_{m = 0}^{k - 1} {{\bm{M}}_{_m}^{{\rm{h}} \to {\rm{f}}}} } \right){\bm{B}}_{^{k + 1}}^{\rm{h}}{\left( {\prod\limits_{m = 0}^{k - 1} {{\bm{M}}_{_m}^{{\rm{h}} \to {\rm{f}}}} } \right)^{\rm{T}}}$ | ${\bm{M}}_{_m}^{{\rm{h}} \to {\rm{f}}} = {\left[ {\begin{array}{*{20}{l}} 1&{}&{}&{}&{}&{} \\ {}&\ddots &{}&{\bf 0}&{}&{} \\ {}&{}&{\alpha _{m + 1}^{{\rm{h}} \to {\rm{f}}}}&{}&{}&{} \\ {}&{}&{}&1&{}&{} \\ {}&{\bf 0}&{}&{}&\ddots &{} \\ {}&{}&{}&{}&{}&1 \end{array}} \right]_{\left( {k + 1} \right) \times \left( {k + 1} \right)}}$ $\alpha _{m + 1}^{{\rm{h}} \to {\rm{f}}} = \left\{ {\begin{aligned} &\;\; 1, \quad\quad\quad\quad\quad\;\;\; i \ne m + 1;\\&\;\; {\bm{C}}\left( t \right)_{_{i, i + 1}}^{\rm{h}} \times {{\bm{A}}^{{\rm{h}} \to {\rm{f}}}}, i = m + 1.\\ \end{aligned}} \right.$ |