Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
Civil Engineering     
Highprecision finite element simulation on lateral mechanical behavior of masonry wall
WANG Chunjiang1, ZHU Zhenyu1, LI Xiangmin2,3, JIANG Lixue2,3, XU Qingfeng2,3
1. School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;2. Shanghai Key Laboratory of Engineering Structure Safety, Shanghai 200032, China;3. Shanghai Research Institute of Building Sciences (Group) Company Limited, Shanghai 200032, China
Download:   PDF(1407KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  
The single brick model was simulated by using the 3D hexahedral solid element C3D8R with reduced integral property in finite element analysis software ABAQUS. The mortar interface between the adjoined bricks was modeled by interfacial model with cohesive behavior and crack properties between 3D hexahedral solid elements, which had the characters of bonding effection, damage and failure. The cohesive stiffness was introduced into the above interfacial model during the elastic stage, and the criteria of occurring and development of crack was also presented. Based on the 3D hexahedral solid element and cohesive interfacial model with contact property, a kind of separated finite element model was bulit, which could be used perfectly on simulating the lateral mechanical behavior of masonry walls. Then, compare the results of highpecision finite element simulation and that of single layer nonopening brick masonry wall without structural concrete column. As a result, the ultimate load value during the simulation was close to the test results, and the simulation error of the ultimate bearing capacity was 2.7%. However, there was respective simulation error of 10% and 27% on the displacement value and the maximum crack width under the ultimate load between the test and the simulation. The analysis results prove that the separated model of masonry wall can work very well in simulating the changing rules of lateral bearing capacity and the stiffness of masonry wall under lateral loads, giving out the cracking mode of masonry wall, which is very close to the test results. The highprecision numerical simulation can offer some references for the seismic performance analysis of the inservice structures with similar masonry walls


Published: 31 December 2015
CLC:  TU 375.4  
Cite this article:

WANG Chun jiang, ZHU Zhen yu, LI Xiang min, JIANG Li xue, XU Qing feng. Highprecision finite element simulation on lateral mechanical behavior of masonry wall. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(12): 2425-2431.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008973X.2015.12.000     OR     http://www.zjujournals.com/eng/Y2015/V49/I12/2425


砌体墙侧向受力性能精细有限元模拟

运用有限元分析软件ABAQUS中的三维六面体缩减积分单元C3D8R来模拟单砖模型,并在六面体单元之间通过引入同时考虑黏结作用和损伤破坏特性的黏性界面模型来模拟砖砖之间的砂浆层,在弹性阶段考虑其黏结刚度,在塑性阶段引入损伤产生和演化准则来模拟界面的开裂.基于该三维实体单元和黏性接触界面模型,建立能够较好模拟砌体墙侧向受力性能的分离式有限元模型.通过比较精细有限元模拟结果与无构造柱不开洞单层砖砌体墙实验结果,发现极限荷载的吻合情况较好,极限承载力的模拟误差可以达到2.7%,但是极限荷载下的位移值和最大裂缝宽度数值的模拟误差分别达到10%和27%.结果证明:所提出的三维分离式有限元模型能较准确地计算砌体墙的侧向承载力及其刚度的变化规律,并能有效地模拟砌体墙开裂的情况,与砌体墙的实验结果吻合较好.精细有限元计算结果可以为在役结构中的类似砌体墙的抗震性能计算提供参考
[1] 丁大钧. 《砌体结构》教学刍议[J]. 建筑结构, 1999,3: 13-18.
DING Da jun. Discussion on teaching of masonry structures [J]. Building Structure, 1999,3: 13-18.
[2] 苑振芳,刘斌.我国砌体结构的发展现状与展望[J].建筑结构,1999,10: 9-13.
YUAN Zhen fang, LIU Bin. Development status and outlook of the masonry structures in China [J]. Building Structure, 1999,10: 9-13.
[3] 中国建筑东北设计研究院有限公司.砌体结构设计规范:GB 500032011[S]. 北京:中国建筑工业出版,2011.
[4] 中国建筑科学研究院.建筑抗震设计规范:GB 500102010[S]. 北京:中国建筑工业出版, 2010.
[5] 李碧雄,谢和平,王哲,等. 汶川地震后多层砌体结构震害调查及分析[J]. 四川大学学报:工程科学版, 2009, 41(4):19-25.
LI Bixiong, XIE He ping, WANG Zhe, et al. Wenchuan earthquake field reconnaissance and analysis on multistory masonry structrue buildings [J]. Journal of Sichuan
University: Engineering Science Edition, 2009, 41(4): 19-25.
[6] ANDREAUS U. Failure criteria for masonry panels under in plane loading [J]. Journal of Structural Engineering, 1996, 122(1): 37-46.
[7] MONDAL G, JAIN S K. Lateral stiffness of masonry infilled reinforced concrete (RC) frames with centralopening [J]. Earthquake Spectra, 2008, 24(3):701-723.
[8] ASTERIS P G, Lateral stiffness of brick masonry infilled plane frames [J]. Journal of Structural Engineering, 2003, 129(8): 1071-1079.
[9] MOHEBKHAH A, TASNIMI A A, MOGHADAM H A. Nonlinear analysis of masonry infilled steel frames with openings using discrete element method [J]. Journal of Constructional Steel Research, 2008, 64(12):1463-1472.
[10] 周彧, 金伟良. 基于离散单元法的框架填充墙裂缝数值模拟[J]. 建筑砌块与砌块建筑, 2008, 6: 3-6.
ZHOU Yu, JIN Wei liang. Numerical simulation on infill cracks of frame based on discrete element method [J]. Building Block and Block Building, 2008, 6: 3-6.
[11] MILANI G, LOUREN O P B, TRALLI A. Homogenised limit analysis of masonry walls, Part I: failure surfaces [J]. Computers and Structures, 2006, 84(3): 166-180.
[12] ATTARD M M, NAPPI A, TIN LOI F. Modeling fracture in masonry [J]. Journal of Structural Engineering, 2007, 133(10): 1385-1392.
[13] LOTFI H R, SHING P B. Interface model applied to fracture of masonry structures [J]. Journal of Structural Engineering, 1994, 120(1): 63-80.
[14] MEHRABI A B, SHING P B. Finite element modeling of masonryinfilled RC frames [J]. Journal of Structural Engineering, 1997, 123(5): 604-613.
[15] SHING P B, STAVRIDIS A, KOUTROMANOS I, et al. Seismic performance of nonductile RC frames with brick infill [C]. ATC and SEI 2009 Conference on Improving the Seismic Performance of Existing Buildings and Other Structures. San Francisco: ATCSEI, 2009: 1117-1128.
[16] SHRESTHA K C, NAGAE T, ARAKI Y. Finite element modeling of cyclic out of plane response of masonry walls retrofitted by inserting inclined stainless steel bars [J].
Journal of Disaster Research, 2011,6(1): 36-43.
[17] 寇剑锋,徐绯,郭家平,等. 黏聚力模型破坏准则及其参数选取[J]. 机械强度,2011,33(5):714-718.
Kou Jian feng, XU Fei, GUO Jia ping, et al. Damage laws of cohesive zone model and selection of the parameters [J]. Journal of Mechanical Strength, 2011,33(5):714-718.
[18] 刘桂秋.砌体结构基本受力性能的研究[D].长沙:湖南大学,2005.
LIU Gui qiu. Research on the basic mechanical behavior of masonry structure [D]. Changsha: Hunan University, 2005.
[19] 孔璟常.砌体填充墙RC框架结构平面内抗震性能数值模拟研究[D]. 哈尔滨:哈尔滨工业大学, 2011.
KONG Jing chang. Numerical simulation for in plane seismic performance of masonry infilled RC frames [D]. Harbin: Harbin Institute of Technology, 2011.
[20] 袁菁颖.碳纤维布加固H型钢梁的实验研究和数值模拟[D].上海:上海交通大学, 2008.
YUAN Jing ying. Experimental Research And Numerical Simulations On H shaped steel beam strengthened with CFRP [D]. Shanghai: Shanghai Jiao Tong University, 2008.
[1] WANG Chun jiang, ZHU Zhen yu, LI Xiang min, JIANG Li xue, XU Qing feng. High precision finite element simulation on lateral mechanical behavior of masonry wall[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(6): 1024-1030.
[2] TIAN Hao, JIN Xiao-ping, CHEN Ai-rong. Probabilistic-based effect analysis of different maintenance actions
on reinforced concrete bridges
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2012, 46(6): 1097-1106.
[3] TIAN Hao, CHEN Ai-rong, CHEN Liang. Structural performance assessment of concrete bridges in life-cycle[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2012, 46(1): 52-57.
[4] JIAO Bin ru, YANG Jun, GUO Chang sheng, LI Shui ming. Key technique of ultralong concrete frame crack control calculation[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2010, 44(10): 2036-2040.