Please wait a minute...
J4  2009, Vol. 43 Issue (6): 1118-1123    DOI: 10.3785/j.issn.1008973X.2009.06.026
    
Local consistent mending technique for complex freeform surface model
BIAN Keke, WANG Qing, LI Jiangxiong, KE Yinglin
(State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China )
Download:   PDF(1444KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A new local consistent mending scheme for complex freeform surface model was proposed,by the combined use of global beautification technique for freeform surface model and Nsided hole filling method,which was based on discretization of boundary conditions and trimmed Bspline surface model.Firstly, the infinitesimal deformation technique of differentiable manifold was used to beautify the multiple surfaces approximated to point cloud subject to tight error globally,which could generate convergent G1 smooth Bspline surfaces and improve the shape of the model.Secondly, the local region containing Npatch corner was clipped off the original multiple surfaces,and then  the trimmed area based on discretization of boundary conditions and the trimmed Bspline surface model was reconstructed to satisfy the approximate G1 continuity with adjacent surfaces while reflecting the feature trend of the original surface.Practical applications illustrate that the presented local consistent mending technique can achieve the global G1 continuity and the shape preserving in the complex surface modeling and reverse engineering,as well as provide a stable and reliable basis for further research on topology recovery technique.



Published: 01 June 2009
CLC:  TP391  
Cite this article:

BIAN Ke-Ke, WANG Jing, LI Jiang-Xiong, et al. Local consistent mending technique for complex freeform surface model. J4, 2009, 43(6): 1118-1123.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008973X.2009.06.026     OR     http://www.zjujournals.com/eng/Y2009/V43/I6/1118


复杂自由曲面模型的局部协调设计技术

综合应用自由曲面模型的全局美化技术和基于离散边界约束条件及裁剪B样条曲面模型的任意边域曲面填充方法,提出了一种新的针对复杂自由曲面模型的局部协调设计技术.利用可微流形的无穷小变形技术,实现紧公差约束下对点云逼近的多张B样条曲面的全局美化,保证了N边汇交曲面相邻边界处收敛的G1光滑拼接,并改善了模型的整体形状.构造包含汇交点的局部区域来裁剪N边汇交曲面,并基于边界条件的离散化处理和裁剪B样条曲面模型重构局部区域,使得局部重构曲面(即协调曲面)与裁剪汇交曲面之间满足近似G1连续,同时光滑地逼近于局部区域的特征趋势.应用实例表明,该局部协调设计技术能够较好地实现复杂曲面造型和反求工程建模中模型的整体G1连续性和保形性,并且为进一步研究基于局部协调设计的拓扑还原技术奠定了坚实可靠的基础.

[1] HAMANN B,JEAN B A.Interactive surface correction based on a local approximation scheme[J].Computer Aided geometric Design,1996,13(4):351368.
[2] 贾明,吕震,李永青,等.基于B样条曲面裁剪计算的局部协调设计[J].机械工程学报,2003,39(2):7478.
JIA Ming,LV Zhen,LI Yong-qing,et al.Local coincided design based on trimmed B-spline surfaces[J].Chinese Journal of Mechanical Engineering,2003,39(2):7478.
[3] 柯映林,范树迁.复杂曲面局部协调设计技术[J].计算机辅助设计与图形学学报,2005,17(3):418424.
KE Ying-lin,FAN Shu-qian.Local consistent mending technique for complex surfaces[J].Journal of Computer Aided Design & Computer Graphics,2005,17(3):418424.
[4] 范树迁,李江雄,柯映林.自由曲面模型的全局美化技术[J].机械工程学报,2007,43(5):175181.
FAN Shu-qian,LI Jiang-xiong,KE Ying-lin.Global beautification technique for freeform surface model[J].Chinese Journal of Mechanical Engineering,2007,43(5):175181.

[5] 朱伟东. 反求工程中基于几何约束的模型重建理论及应用研究[D].杭州:浙江大学,2007:109120.
ZHU Wei-dong.Research on the theory and application of geometric constraint based model reconstruction in reverse engineering[D].Hangzhou:Zhejiang University,2007:109120.
[6] KIMURA M,SAITO T,SHINYA M.Surface deformation with differential geometric structures[J].Computer Aided Geometric Design,1996,13(3):243256.
[7] SHI X Q,WANG T J,WU P R,et al.Reconstruction of convergent G1 smooth B-spline surfaces[J].Computer Aided Geometric Design,2004,21(9):893913.
[8] WELCH W,WITKIN A.Variational surface modelling[J].ACM SIGGRAPH Computer Graphics,1992,26(2):157166.
[9] PARK H,KIM K,LEE S-C.A method for approximate NURBS curve compatibility based on multiple curve refitting[J].Computer Aided Design,2000,32(4):237252.
[10] 陈曦. 反求工程中基于点云的特征挖掘技术研究[D].杭州:浙江大学,2005:2733.
CHEN Xi.Study on feature mining technology based on point cloud in reverse engineering[D].Hangzhou:Zhejiang University,2005:2733.
[11] MA W Y,KRUTH J P.Parameterization of randomly measured points for least squares fitting of B-spline curves and surfaces[J].Computer Aided Design,1995,27(9):663675.
[12] WEISS V,ANDOR L,RENNER G,et al.Advanced surface fitting techniques[J].Computer Aided Geometric Design,2002,19(1):1942.

[1] HU Qiu-Er, OU Yang-Yi, ZHANG San-Yuan, ZHANG Yin. Mesh deformation transfer based on meanvalue skeleton[J]. J4, 2010, 44(4): 710-714.
[2] CHAN Zhen-Yu, YANG Ying-Chun. Universal background model reduction based efficient speaker recognition[J]. J4, 2009, 43(6): 978-982.
[3] CA Hua-Hui, WANG Guo-Jin. Approximating logarithmic spiral segments by polynomial and C-Bézier[J]. J4, 2009, 43(6): 999-1004.
[4] HUANG Feng, BO Jia-Dun, CHEN Chun, et al. Improving question classification via weighted feature model[J]. J4, 2009, 43(6): 994-998.
[5] SHU Beng, HONG Guo-Zhao. Multi-degree B-spline curves[J]. J4, 2009, 43(5): 789-795.
[6] LOU Bin, CHEN Hai-Bin, DIAO Wu-Feng, et al. Structural similarity image quality assessment based on distortion model[J]. J4, 2009, 43(5): 864-868.
[7] XU Jing-hua, ZHANG Shu-you. Shape retrieval method of 3D models based on shape  distribution graph and BP neural network[J]. J4, 2009, 43(5): 877-883.