Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2025, Vol. 59 Issue (11): 2389-2399    DOI: 10.3785/j.issn.1008-973X.2025.11.018
    
Adaptive dynamic hierarchical equilibrium optimizer algorithm and convergence
Jingsen LIU1,2(),Sainan GAO1,2,Yu LI3,4,*(),Huan ZHOU4
1. Henan International Joint Laboratory of Intelligent Network Theory and Key Technology, Henan University, Kaifeng 475004, China
2. College of Software, Henan University, Kaifeng 475004, China
3. Institute of Management Science and Engineering, Henan University, Kaifeng 475004, China
4. Business School, Henan University, Kaifeng 475004, China
Download: HTML     PDF(1079KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

An efficient adaptive dynamic hierarchical equilibrium optimizer CGTEO was proposed to address the problems of the equilibrium optimizer (EO) algorithm that was prone to fall into local extremes and poor optimization search accuracy when dealing with complex optimization problems, and its convergence was analyzed both theoretically and experimentally. An adaptive cross-updating mechanism based on sine-cosine coefficients was introduced to enhance the population diversity. A dynamic hierarchical search strategy was incorporated to balance the different needs of sub-populations for exploration and exploitation capabilities. An elite neighborhood learning strategy based on triangular topological units was incorporated to improve the convergence accuracy and effectively avoid local extremes. The global convergence of the CGTEO algorithm was demonstrated through the probability measure method. CGTEO and nine representative comparison algorithms were comprehensively tested and comparatively analyzed by using the CEC2017 test set. The optimization results were evaluated by combining various methods such as optimization searching accuracy, convergence curves, Wilcoxon rank-sum test and violin plots. The experimental results show that the CGTEO algorithm exhibits outstanding performance in optimization precision, convergence capability and stability. The Wilcoxon rank-sum test indicated that the optimization results of the proposed algorithm were statistically significantly superior to the other compared algorithms.



Key wordsequilibrium optimizer algorithm      adaptive cross-updating      dynamic hierarchical search      elite neighborhood learning      convergence analysis      Wilcoxon rank-sum test     
Received: 15 October 2024      Published: 30 October 2025
CLC:  TP 301  
Fund:  河南省重点研发与推广专项资助项目(252102210171);国家自然科学基金资助项目(72104069);河南省研究生教育改革与质量提升工程资助项目(YJS2025AL98);河南省高等教育教学改革研究与实践项目重点资助项目(2021SJGLX074).
Corresponding Authors: Yu LI     E-mail: ljs@henu.edu.cn;leey@henu.edu.cn
Cite this article:

Jingsen LIU,Sainan GAO,Yu LI,Huan ZHOU. Adaptive dynamic hierarchical equilibrium optimizer algorithm and convergence. Journal of ZheJiang University (Engineering Science), 2025, 59(11): 2389-2399.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2025.11.018     OR     https://www.zjujournals.com/eng/Y2025/V59/I11/2389


自适应动态分级平衡优化器算法及收敛性

为了解决平衡优化器(EO)算法在处理复杂优化问题时易陷入局部极值、寻优精度有时不佳的问题,提出高效的自适应动态分级平衡优化器CGTEO,对其收敛性进行理论和实验分析. 引入基于正余弦系数的自适应交叉更新机制,增强种群多样性. 加入动态分级搜索策略,平衡各子种群对探索和开发能力的不同需求. 融合基于三角形拓扑单元的精英邻域学习策略,改善收敛精度并有效避免局部极值. 通过概率测度法,证明了CGTEO算法的全局收敛性. 采用CEC2017测试集,对CGTEO与9种代表性对比算法进行全面测试与对比分析,结合寻优精度、收敛曲线、Wilcoxon 秩和检验及小提琴图等多种方法评估优化结果. 实验结果表明,CGTEO算法在优化精度、收敛性能和稳定性方面均表现出色. Wilcoxon秩和检验表明,该算法的优化结果在统计上显著优于其他对比算法.


关键词: 平衡优化器算法,  自适应交叉更新,  动态分级搜索,  精英邻域学习,  收敛性分析,  Wilcoxon 秩和检验 
Fig.1 Trend of generating probability GP
Fig.2 Schematic diagram of triangular topology unit construction
函数算法平均值最佳值最差值函数算法平均值最佳值最差值
F1CGTEO4.40×1041.44×1041.14×105F12CGTEO2.11×1077.78×1064.71×107
F1EO2.09×1092.05×1089.70×109F12EO9.16×1074.46×1071.73×108
F1m-EO1.89×10108.98×1093.17×1010F12m-EO6.34×1082.94×1081.46×109
F1AEO1.02×1091.32×1086.39×109F12AEO7.81×1073.14×1071.71×108
F5CGTEO7.65×1026.95×1028.90×102F13CGTEO6.33×1032.90×1031.83×104
F5EO1.14×1039.26×1021.35×103F13EO3.23×1041.28×1041.40×105
F5m-EO1.37×1031.23×1031.50×103F13m-EO8.55×1052.04×1051.96×106
F5AEO1.07×1038.78×1021.25×103F13AEO2.79×1041.10×1047.24×104
F6CGTEO6.08×1026.04×1026.13×102F28CGTEO3.52×1033.45×1033.60×103
F6EO6.27×1026.18×1026.44×102F28EO4.12×1033.80×1034.89×103
F6m-EO6.68×1026.55×1026.80×102F28m-EO5.37×1034.44×1036.35×103
F6AEO6.21×1026.11×1026.37×102F28AEO3.94×1033.72×1034.37×103
F7CGTEO1.11×1031.02×1031.21×103F29CGTEO5.29×1034.42×1036.16×103
F7EO1.89×1031.58×1032.20×103F29EO7.01×1035.40×1038.32×103
F7m-EO2.74×1032.48×1033.05×103F29m-EO9.73×1037.73×1031.24×104
F7AEO1.63×1031.40×1031.94×103F29AEO6.84×1035.11×1038.55×103
F11CGTEO4.40×1033.39×1036.05×103F30CGTEO8.42×1046.02×1041.20×105
F11EO3.39×1042.10×1046.10×104F30EO6.35×1051.92×1051.91×106
F11m-EO1.24×1048.25×1031.99×104F30m-EO1.57×1073.66×1063.11×107
F11AEO1.43×1048.94×1032.27×104F30AEO4.88×1051.81×1051.23×106
Tab.1 Comparison of test result between CGTEO and EO with its improved algorithms
函数算法平均值最佳值最差值函数算法平均值最佳值最差值
F1CGTEO4.40×1041.44×1041.14×105F12CGTEO2.11×1077.78×1064.71×107
F1SCA2.02×10111.81×10112.28×1011F12SCA9.34×10107.05×10101.12×1011
F1HHO8.20×1094.59×1091.40×1010F12HHO1.54×1098.08×1082.99×109
F1SAO2.76×1091.01×1096.34×109F12SAO1.32×1085.06×1072.90×108
F5CGTEO7.65×1026.95×1028.90×102F13CGTEO6.33×1032.90×1031.83×104
F5SCA2.03×1031.93×1032.19×103F13SCA1.58×10101.22×10102.18×1010
F5HHO1.60×1031.54×1031.72×103F13HHO1.96×1079.54×1063.68×107
F5SAO1.53×1031.11×1031.75×103F13SAO1.68×1045.32×1035.10×104
F6CGTEO6.08×1026.04×1026.13×102F28CGTEO3.52×1033.45×1033.60×103
F6SCA7.02×1026.93×1027.13×102F28SCA2.07×1041.64×1042.38×104
F6HHO6.88×1026.81×1026.98×102F28HHO5.70×1035.09×1036.54×103
F6SAO6.29×1026.20×1026.43×102F28SAO3.74×1033.52×1034.16×103
F7CGTEO1.11×1031.02×1031.21×103F29CGTEO5.29×1034.42×1036.16×103
F7SCA3.93×1033.54×1034.37×103F29SCA3.42×1042.13×1046.34×104
F7HHO3.76×1033.54×1033.96×103F29HHO1.17×1049.33×1031.36×104
F7SAO2.18×1032.02×1032.61×103F29SAO6.68×1035.68×1039.70×103
F11CGTEO4.40×1033.39×1036.05×103F30CGTEO8.42×1046.02×1041.20×105
F11SCA1.47×1051.08×1051.95×105F30SCA7.11×1093.81×1099.39×109
F11HHO7.38×1043.01×1041.15×105F30HHO7.17×1073.20×1071.57×108
F11SAO1.78×1051.01×1053.14×105F30SAO5.33×1051.02×1051.92×106
Tab.2 Comparison of test result between CGTEO and other emerging optimization algorithms
函数算法平均值最佳值最差值函数算法平均值最佳值最差值
F1CGTEO4.40×1041.44×1041.14×105F12CGTEO2.11×1077.78×1064.71×107
F1GCHHO3.34×1081.35×1087.90×108F12GCHHO2.06×1085.76×1073.91×108
F1LSHADE-c5.53×1081.60×1081.55×109F12LSHADE-c2.30×1085.27×1073.99×108
F1MadDE1.60×10107.99×1092.90×1010F12MadDE8.38×1083.93×1082.19×109
F5CGTEO7.65×1026.95×1028.90×102F13CGTEO6.33×1032.90×1031.83×104
F5GCHHO1.33×1031.20×1031.46×103F13GCHHO3.18×1057.58×1038.86×106
F5LSHADE-c1.10×1039.67×1021.23×103F13LSHADE-c7.22×1042.53×1043.63×105
F5MadDE1.46×1031.34×1031.57×103F13MadDE2.80×1041.56×1045.47×104
F6CGTEO6.08×1026.04×1026.13×102F28CGTEO3.52×1033.45×1033.60×103
F6GCHHO6.62×1026.57×1026.67×102F28GCHHO3.95×1033.65×1034.35×103
F6LSHADE-c6.33×1026.20×1026.43×102F28LSHADE-c3.90×1033.68×1034.28×103
F6MadDE6.54×1026.43×1026.64×102F28MadDE6.25×1035.37×1037.69×103
F7CGTEO1.11×1031.02×1031.21×103F29CGTEO5.29×1034.42×1036.16×103
F7GCHHO2.87×1032.50×1033.25×103F29GCHHO7.68×1036.60×1038.74×103
F7LSHADE-c2.21×1031.88×1032.63×103F29LSHADE-c7.84×1036.93×1038.77×103
F7MadDE2.82×1032.59×1033.09×103F29MadDE8.81×1037.91×1039.84×103
F11CGTEO4.40×1033.39×1036.05×103F30CGTEO8.42×1046.02×1041.20×105
F11GCHHO2.05×1041.12×1044.53×104F30GCHHO1.51×1064.75×1052.64×106
F11LSHADE-c2.32×1045.39×1039.91×104F30LSHADE-c3.83×1061.10×1061.07×107
F11MadDE6.28×1044.88×1049.68×104F30MadDE4.51×1069.44×1052.02×107
Tab.3 Comparison of test result between CGTEO and other high performance improved algorithms
Fig.3 Comparison of convergence curves of 10 algorithms
Fig.4 Violin diagrams for 10 algorithms
Fig.5 Heatmap of Wilcoxon rank sum test result
[1]   MIRJALILI S, LEWIS A The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51- 67
doi: 10.1016/j.advengsoft.2016.01.008
[2]   MIRJALILI S SCA: a sine cosine algorithm for solving optimization problems[J]. Knowledge Based Systems, 2016, 96: 120- 133
doi: 10.1016/j.knosys.2015.12.022
[3]   HEIDARI A A, MIRJALILI S, FARIS H, et al Harris hawks optimization: algorithm and applications[J]. Future Generation Computer Systems, 2019, 97: 849- 872
doi: 10.1016/j.future.2019.02.028
[4]   DENG L, LIU S Snow ablation optimizer: a novel metaheuristic technique for numerical optimization and engineering design[J]. Expert Systems with Applications, 2023, 225: 120069
doi: 10.1016/j.eswa.2023.120069
[5]   FARAMARZI A, HEIDARINEJAD M, STEPHENS B, et al Equilibrium optimizer: a novel optimization algorithm[J]. Knowledge Based Systems, 2020, 191: 105190
doi: 10.1016/j.knosys.2019.105190
[6]   SHAIK M A, MAREDDY P L, VISALI N Enhancement of voltage profile in the distribution system by reconfiguring with DG placement using equilibrium optimizer[J]. Alexandria Engineering Journal, 2022, 61 (5): 4081- 4093
doi: 10.1016/j.aej.2021.09.063
[7]   DINH P H Combining gabor energy with equilibrium optimizer algorithm for multi-modality medical image fusion[J]. Biomedical Signal Processing and Control, 2021, 68: 102696
doi: 10.1016/j.bspc.2021.102696
[8]   SELEEM S I, HASANIEN H M, El-FERGANY A A Equilibrium optimizer for parameter extraction of a fuel cell dynamic model[J]. Renewable Energy, 2021, 169: 117- 128
doi: 10.1016/j.renene.2020.12.131
[9]   张梦溪, 马良, 刘勇 融合浓度平衡和菲克定律的新平衡优化器算法[J]. 计算机工程与应用, 2023, 59 (3): 66- 76
ZHANG Mengxi, MA Liang, LIU Yong New equilibrium optimizer algorithm combining concentration equilibrium and Fick’s law[J]. Computer Engineering and Applications, 2023, 59 (3): 66- 76
doi: 10.3778/j.issn.1002-8331.2205-0007
[10]   周鹏, 董朝轶, 陈晓艳, 等 基于Tent混沌和透镜成像学习策略的平衡优化器算法[J]. 控制与决策, 2023, 38 (6): 1569- 1576
ZHOU Peng, DONG Chaoyi, CHEN Xiaoyan, et al An equilibrium optimizer algorithm based on a Tent chaos and lens imaging learning strategy[J]. Control and Decision, 2023, 38 (6): 1569- 1576
[11]   DINKAR S K, DEEP K, MIRJALILI S, et al Opposition-based Laplacian equilibrium optimizer with application in image segmentation using multilevel thresholding[J]. Expert Systems with Applications, 2021, 174: 114766
doi: 10.1016/j.eswa.2021.114766
[12]   ATHA R, RAJAN A, MALLICK S An enhanced equilibrium optimizer for solving complex optimization problems[J]. Information Sciences, 2024, 660: 120077
doi: 10.1016/j.ins.2023.120077
[13]   FAN Q, HUANG H, YANG K, et al A modified equilibrium optimizer using opposition-based learning and novel update rules[J]. Expert Systems with Applications, 2021, 170: 114575
doi: 10.1016/j.eswa.2021.114575
[14]   WU X, HIROTA K, JIA Z, et al Ameliorated equilibrium optimizer with application in smooth path planning oriented unmanned ground vehicle[J]. Knowledge Based Systems, 2023, 260: 110148
doi: 10.1016/j.knosys.2022.110148
[15]   ZHAO S, ZHANG T, CAI L, et al Triangulation topology aggregation optimizer: a novel mathematics-based meta-heuristic algorithm for continuous optimization and engineering applications[J]. Expert Systems with Applications, 2024, 238: 121744
doi: 10.1016/j.eswa.2023.121744
[16]   SOLIS F J, WETS R J B Minimization by random search techniques[J]. Mathematics of Operations Research, 1981, 6 (1): 19- 30
doi: 10.1287/moor.6.1.19
[17]   SONG S, WANG P, HEIDARI A A, et al Dimension decided harris hawks optimization with Gaussian mutation: balance analysis and diversity patterns[J]. Knowledge Based Systems, 2021, 215: 106425
doi: 10.1016/j.knosys.2020.106425
[18]   AWAD N H, ALI M Z, SUGANTHAN P N. Ensemble sinusoidal differential covariance matrix adaptation with Euclidean neighborhood for solving CEC2017 benchmark problems [C]// IEEE Congress on Evolutionary Computation. [S. l. ]: IEEE, 2017: 372-379.
[19]   BISWAS S, SAHA D, DE S, et al. Improving differential evolution through Bayesian hyperparameter optimization [C]//IEEE Congress on Evolutionary Computation. [S. l. ]: IEEE, 2021: 832-840.
[1] Haiye CHEN,Zeqiang ZHANG,Wei LIANG,Lei GUO,Qiyao DUAN. Modeling and optimization of human-robot collaborative U-shaped disassembly line problem with multi-constraint[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(11): 2248-2258.
[2] Chuang TIAN,He HUANG,Lan YANG,Tao GAO,Huifeng WANG. Improved Aquila algorithm to optimize fuzzy PID control of vehicle ABS[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(7): 1462-1470.
[3] Yong LI,Zhiqiang LIU,Maoxing TIAN,Songlin JIA. Semantic compression algorithm based on global correlated semantic importance[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(4): 795-803.
[4] Rui DAI,Jing JIE,Wanliang WANG,Qianlin YE,Fei WU. Review of data-driven intelligent computation and its application[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(2): 227-248.
[5] Fei WU,Jiacheng CHEN,Wanliang WANG. Review on computational intelligence based on parallel computing[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(1): 27-38.
[6] Yulong DONG,Lu CHEN,Zhongkai BAO. Resource allocation of aircraft final assembly logistics distribution system based on game theory[J]. Journal of ZheJiang University (Engineering Science), 2025, 59(1): 120-129.
[7] Huiling WU,Sheng LIU. Elite coevolutionary mayfly algorithm[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(7): 1346-1356.
[8] Yu ZHOU,Zexuan PEI,Peichong WANG,Bo CHEN. Aquila optimizer based on phasor operator and flow direction operator[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(2): 304-316.
[9] Wan-liang WANG,Zhong-kui CHEN,Fei WU,Zheng WANG,Meng-jiao YU. Dynamic multi-objective optimization algorithm based on individual prediction[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(11): 2133-2146.
[10] Chuan-hua ZHOU,Li-chun CAO,Jia-yi ZHOU,Feng ZHAN. Identification of critical nodes in temporal networks based on graph convolution union computing[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(5): 930-938.
[11] Ya-feng WANG,Li-hua ZHOU,Wei CHEN,Li-zhen WANG,Hong-mei CHEN. Community search with mutual information maximization over heterogeneous information networks[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(2): 287-298.
[12] Xue-jiao LIU,Qing-wu SONG,Ying-jie XIA. Secure computation offloading scheme for matrix in Internet of vehicles based on blockchain[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(1): 144-154.
[13] Jin-sheng YANG,Hao WANG,Zhen GAO,Zhao-hui GUO. Double RSA accumulator based stateless transaction verification scheme[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(1): 178-189.
[14] Xiao-feng FU,Li NIU. Micro-expression classification based on deep convolution and auto-encoder enhancement[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(10): 1948-1957.
[15] Xiao-bo CHEN,Ling CHEN,Shu-rong LIANG,Yu HU. Robust cooperative target tracking under heavy-tailed non-Gaussian localization noise[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 967-976.