|
|
|
| Multi-step prediction of individual activity sequence based on multi-source data |
Yang SHU1( ),Yilin SUN1,2,*( ),Zhenyu MEI1,Yimin ZHANG2,Yifang HUANG2 |
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China 2. Polytechnic Institute, Zhejiang University, Hangzhou 310015, China |
|
|
|
Abstract A multi-step prediction method for individual activity sequences based on multi-source data was proposed by considering the limitations of traditional research on individual activity sequence prediction based on aggregated data or sampled data. Mobile phone signaling data and point of interest (POI) data were used. Activity types of residents were inferred by using the rule-based and latent Dirichlet allocation (LDA) topic modeling methods, and multi-day activity sequences were constructed. The nTreeClus clustering framework was introduced to identify six typical multi-day activity patterns of residents in Hangzhou City. Meteorological and calendar data in the traffic environment were integrated, and the temporal fusion transformer (TFT) model was applied to conduct multi-step prediction of activity sequences. The micro-average F1 score was 87%, which increased by 11%, 6% and 3% respectively compared with traditional statistical models and mainstream deep learning models. The F1 scores for "entertainment" and "personal maintenance" activities increased by 31% and 27% respectively compared with the sequence-to-sequence gated recurrent unit (S2SGRU) model, significantly improving the accuracy of multi-step prediction of individual activity sequences.
|
|
Received: 22 October 2024
Published: 30 October 2025
|
|
|
| Fund: 浙江省“尖兵”“领雁”研发攻关计划资助项目(2023C01240);国家自然科学基金资助项目(52131202). |
|
Corresponding Authors:
Yilin SUN
E-mail: shuyang@zju.edu.cn;yilinsun@zju.edu.cn
|
基于多源数据的个体活动序列多步预测
针对传统的以集计数据或抽样数据在个体活动序列预测研究中的局限性,提出基于多源数据的个体活动序列多步预测方法. 基于手机信令数据和兴趣点 (POI)数据,使用考虑规则和潜在狄利克雷分配(LDA)主题建模方法推断居民活动类型,构建多日活动序列. 引入nTreeClus聚类框架,识别出杭州市居民6种典型的多日活动模式,融合交通环境中的气象、日历数据,应用时间融合Transformer (TFT) 模型进行活动序列的多步预测,微平均F1分数为87%. 与传统统计模型及主流深度学习模型进行比较,分别提升了11%、6%、3%,F1分数在“娱乐”、“个人维护”活动上较序列到序列门控循环单元(S2SGRU)模型分别提升了31%、27%,显著提高了个体活动序列多步预测的准确性.
关键词:
城市交通,
交通需求预测,
时间序列预测,
活动类型挖掘,
多源数据
|
|
| [1] |
ERMAGUN A, FAN Y, WOLFSON J, et al Real-time trip purpose prediction using online location-based search and discovery services[J]. Transportation Research Part C: Emerging Technologies, 2017, 77 (4): 96- 112
|
|
|
| [2] |
HADJIDIMITRIOU N S, CANTELMO G, ANTONIOU C Machine learning for activity pattern detection[J]. Journal of Intelligent Transportation Systems, 2023, 27 (6): 834- 848
doi: 10.1080/15472450.2022.2084336
|
|
|
| [3] |
LI W, ZHANG Y, CHEN Y, et al Multi-day activity pattern recognition based on semantic embeddings of activity chains[J]. Travel Behaviour and Society, 2024, 34 (1): 100682
|
|
|
| [4] |
ALEXANDER L, JIANG S, MURGA M, et al Origin–destination trips by purpose and time of day inferred from mobile phone data[J]. Transportation Research Part C: Emerging Technologies, 2015, 58 (9): 240- 250
|
|
|
| [5] |
HUANG L, LI Q, YUE Y. Activity identification from GPS trajectories using spatial temporal POIs’ attractiveness [C]//Proceedings of the 2nd ACM SIGSPATIAL International Workshop on Location based Social Networks. San Jose: ACM, 2010: 27-30.
|
|
|
| [6] |
CHEN C, JIAO S, ZHANG S, et al TripImputor: real-time imputing taxi trip purpose leveraging multisourced urban data[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19 (10): 3292- 3304
doi: 10.1109/TITS.2017.2771231
|
|
|
| [7] |
林楠. 基于大规模手机定位数据的居民活动链挖掘方法[D]. 深圳: 中国科学院大学(中国科学院深圳先进技术研究院), 2018. LIN Nan. Mining methods for residents' activity chains based on large-scale mobile phone positioning data [D]. Shenzhen: University of Chinese Academy of Sciences (Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences), 2018.
|
|
|
| [8] |
ZHAO X, LI Z, ZHANG Y, et al Discover trip purposes from cellular network data with topic modeling[J]. IEEE Intelligent Transportation Systems Magazine, 2020, 14 (4): 37- 46
|
|
|
| [9] |
LI Z, XIONG G, WEI Z, et al Trip purposes mining from mobile signaling data[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 23 (8): 13190- 13202
|
|
|
| [10] |
YANG C, YE W, ZHU R, et al Resident activity pattern recognition and comparison of six Sino-American metropolises[J]. IET Intelligent Transport Systems, 2019, 13 (3): 443- 452
doi: 10.1049/iet-its.2018.5246
|
|
|
| [11] |
HUANG L, XIA F, CHEN H, et al Reconstructing human activities via coupling mobile phone data with location-based social networks[J]. Travel Behaviour and Society, 2023, 33 (4): 100606
|
|
|
| [12] |
GOULET-LANGLOIS G, KOUTSOPOULOS H N, ZHAO J Inferring patterns in the multi-week activity sequences of public transport users[J]. Transportation Research Part C: Emerging Technologies, 2016, 64 (3): 1- 16
|
|
|
| [13] |
ZHAI W, BAI X, PENG Z R, et al From edit distance to augmented space-time-weighted edit distance: detecting and clustering patterns of human activities in Puget Sound region[J]. Journal of Transport Geography, 2019, 78 (7): 41- 55
|
|
|
| [14] |
JAHANSHAHI H, BAYDOGAN M G nTreeClus: a tree-based sequence encoder for clustering categorical series[J]. Neurocomputing, 2022, 494 (7): 224- 241
|
|
|
| [15] |
WANG Y, ZHANG D, LIU Y, et al Enhancing transportation systems via deep learning: a survey[J]. Transportation Research Part C: Emerging Technologies, 2019, 99 (2): 144- 163
|
|
|
| [16] |
CONNOR J, MARTIN R, ATLAS L Recurrent neural networks and robust time series prediction[J]. IEEE Transactions on Neural Networks, 1994, 5 (2): 240- 254
doi: 10.1109/72.279188
|
|
|
| [17] |
CHO K, VAN M B, GULCERHRE C, et al. Learning phrase representations using RNN encoder -decoder for statistical machine translation [C]//MOSCHITTI A, PANG B, DAELEMANS W. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Doha: ACL, 2014: 1724-1734.
|
|
|
| [18] |
HOCHREITER S, SCHMIDHUBER J Long short-term memory[J]. Neural Computation, 1997, 9 (8): 1735- 1780
doi: 10.1162/neco.1997.9.8.1735
|
|
|
| [19] |
翁小雄, 任杰, 覃镇林, 等 基于深度注意力模型的个体出行多步预测研究[J]. 重庆交通大学学报: 自然科学版, 2022, 41 (10): 35 WENG Xiaoxiong, REN Jie, QIN Zhenlin, et al Multi-step prediction of individual travel based on deep attention model[J]. Journal of Chongqing Jiaotong University: Natural Science, 2022, 41 (10): 35
|
|
|
| [20] |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach: Curran Associates Inc. , 2017: 6000-6010.
|
|
|
| [21] |
LIM B, ARIK S O, LOEFF N, et al Temporal fusion transformers for interpretable multi-horizon time series forecasting[J]. International Journal of Forecasting, 2021, 37 (4): 1748- 1764
doi: 10.1016/j.ijforecast.2021.03.012
|
|
|
| [22] |
高海龙, 徐一博, 刘坤, 等 基于多源数据融合的高速公路路网短时交通流参数实时预测[J]. 吉林大学学报: 工学版, 2024, 54: 155- 161 GAO Hailong, XU Yibo, LIU Kun, et al Real-time prediction of short-term traffic flow parameters in expressway network based on multi-source data fusion[J]. Journal of Jilin University: Engineering and Technology Edition, 2024, 54: 155- 161
|
|
|
| [23] |
LIU Y, LIU Z, JIA R DeepPF: a deep learning based architecture for metro passenger flow prediction[J]. Transportation Research Part C: Emerging Technologies, 2019, 101 (4): 18- 34
|
|
|
| [24] |
YANG Y, XIONG C, ZHUO J, et al Detecting home and work locations from mobile phone cellular signaling data[J]. Mobile Information Systems, 2021, 2021 (1): 5546329
|
|
|
| [25] |
YANG C, ZHANG Y, ZHAN X, et al Fusing mobile phone and travel survey data to model urban activity dynamics[J]. Journal of Advanced Transportation, 2020, 2020 (1): 5321385
|
|
|
| [26] |
孙石磊, 王超, 赵元棣 基于轮廓系数的参数无关空中交通轨迹聚类方法[J]. 计算机应用, 2019, 39 (11): 3293- 3297 SUN Shilei, WANG Chao, ZHAO Yuandi Parameter-free air traffic trajectory clustering method based on silhouette coefficient[J]. Computer Applications, 2019, 39 (11): 3293- 3297
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|